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Abstract

Cracks on the surface of civil structures (e.g. pavement sections, concrete structures) progress in several formations and
under different deterioration mechanisms. In monitoring practice, it is often that cracking type with its worst damage
level is selected as a representative condition state, while other cracking types and their damage levels are neglectedin
records, remaining as hidden information. Therefore, the practice in monitoring has a potential to conceal with a bias
selection process, which possibly result in not optimal intervention strategies. In overcoming these problems, our paper
presents a non-homogeneous Markov hazard model, with competing hazard rates. Cracking condition states are classified
in three types (longitudinal crack, horizontal crack, and alligator crack), with three respective damage levels. The dynamic
selection of cracking condition states are undergone a competing process of cracking types and damage levels. We apply a
numerical solution using Bayesian estimation and Markov Chain Monte Carlo method to solve the problem of high-order
integration of complete likelihood function. An empiricalstudy on a data-set of Japanese pavement system is presented
to demonstrate the applicability and contribution of the model.

Key words: Bayesian estimation, Markov Chain Monte Carlo, Gibbs sampling, Statistical deterioration prediction,
Markov chain model, Infrastructure management, Pavement cracking processes

1. Introduction

Modeling deterioration of civil infrastructures with statistical approach has been significantly documented in recent
years. One of the great advantages of applying statistical deterioration forecasting models is of its capability to incorporate
uncertainties. The uncertainty in deterioration process of civil infrastructure can be reduced by making use of historical
monitoring data. Among the statistical modeling models, models with Markov chain have been widely applied both
in research (Tsuda et al., 2006; Robelin and Madanat, 2007; Kobayashi et al., 2012b) and in practice (Thompson et al.,
1998; AASHTO, 2004). In Markov deterioration forecasting models, the deterioration process of civil infrastructuresis
described by the transition probability among discrete condition states, which are deducted values or composite values
from performance indicators of civil infrastructures (e.g. Pavement service indicator (PSI) is a composite conditionstate,
which is evaluated using performance indicators such as cracking, roughness, etc. (Shahin, 2005).

In Pavement management systems (PMSs), quality of a road surface is generally valuated by its riding quality and the
skid resistance. The riding quality and skid resistance arereflected and quantified by evaluating pavement performance
indicators such as cracking, rutting, and longitudinal profile (Fukuhara et al., 1990). Measured values of those indicators
are monitoring data, which are stored in the data bank of the PMS. Monitoring data are used for the evaluation of pavement
condition, deterioration forecasting, and supporting decision makers to select optimal intervention strategies (OISs). If
the monitoring data appears to possess measurement errors or bias selection of data, it is likely that accurate deterioration
forecasting is flaw, as a results, decision makers would end up with intervention strategies (ISs), which are not optimal
and considerable amount of benefits incurred to stakeholders (e.g. owner, users, and the public) reduced (Kobayashi et al.,
2012b).

The deterioration of pavement is a complex process and therefore a single performance indicator would not be possible
to perfectly capture the process (Dore and Zubeck, 2009; Kenneth, 2010) (e.g. riding quality of pavement is measured
not only by cracking, but also by rutting, and longitudinal profile). Even when considering a single performance indicator
alone, its deterioration mechanism and progress could be complicated. One of the typical example that shows the complex
deterioration concerning one performance indicator is themechanism and development of cracks.

Cracking is one of the popular deterioration phenomena in the PMSs, especially in the cold regions (Dore and Zubeck,
2009). Cracks appear on the road surface in different patterns and directions. Cracks are progressed and observed in
horizontal direction, longitudinal direction, or the combination of the twos. Reasons for crack initiation can be numerous
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(e.g. rain water infiltrated directly into pavement structures and causes the reduction in the cohesion of materials, or
contraction and expansion of materials due to high fluctuation of ambient temperature). If a small crack initiated on a
particular location of the pavement section, the overall deterioration process of a road section would significantly advanced
with a greater speed.

In practices, when percentage of cracks on a pavement section reaches to a certain alarming level (level at which riding
quality, skid resistance, and greater negative impact is anticipated, or the alarming level specified as technical standard and
requirement for interventions, etc.), interventions (e.g. crack sealing and crack filling) should be implemented to prevent
cracking from further advancement and also to ensure the riding quality in acceptable standards for users. However, as
earlier mentioned, cracking is a complex one. It progressesin various directions and possibily with different levels of
damages (Kaito et al., 2007). Mechanism of horizontal cracking could be different from that of longitudinal cracking.
Moreover, treatments for different cracking types are not always the sames. Therefore, itis important to understand the
deterioration process of each crack types. This paper focuses on deterioration prediction of cracking, which is a good
representation of complex pavement performance indicators, with multiple types.

Thanks to the development of high-tech inspection and measurement devices for civil infrastructures in the past
decades, especially the application of high definition cameras and image processing techniques (Kawashima et al., 1984;
Fukuhara et al., 1990; Mohajeri and Manning, 1991; Wang and Smadi, 2011), a small crack, even with 1 mm width, can
be detected (Fukuhara et al., 1990). Basically, cracks are classified into three types: horizontal crack (or transversecrack),
longitudinal crack, and alligator crack (Rababaah et al., 2005; Kaito et al., 2007; Nakat and Madanat, 2008). Despite the
fact that there are different types of cracks that can be recorded and stored in the data bank of the PMS, the use of crack is
often referred and represented to its general name as “crack” without much attention of the actual type of crack itself. In
many practical cases, the percentage of crack on a road section is the representation of the percentage of a type of crack
at its worst deterioration condition. The representative crack and its corresponding deterioration condition is useddi-
rectly for deterioration prediction using Markov model with single dimension of condition states (e.g. a single dimension
Markov model is formulated using only a vector of condition states).

There is a problem in practice that selection of representative crack to be used in Markov models is, in many cases,
driven by the bias or default assumption on which cracking types and their corresponding levels of deterioration. For
example, during the courses of inspections, engineers often select the cracking type with its worst deterioration condition
among other cracking types to be the representative of crackfor the examined road section. Under this situation, there is
a bias in the selection of crack for use in the Markov deterioration model with single dimension of condition states. The
practice of selecting the typical cracking type with its worst deterioration condition among other cracking types is not only
considered as bias selection process, but also a competitive selection process as well. For example, in the first inspection
time, horizontal crack is selected to be representative crack of the investigated road section. However, in the second
inspection time on the same road section (or other inspection on different road section), longitudinal crack is selected to
be the representative one.

To overcome the limitation of using Markov model with singledimension of condition states, Kaito et al. (2007)
developed a novel hierarchical Markov model (hereafter referred as HIMA model) and successfully tested it on a set of
cracking data in Japan. To the best of authors knowledge, thecited model is the first one in the field addressing the multiple
dimensions of deterioration and multiple condition stateswith Markov chain model. The HIMA model was developed as
a novel extension of the multi-stage exponential Markov model (MUSTEM), which was previously developed also by the
same research group (Tsuda et al., 2006; Lethanh, 2009; Kobayashi et al., 2012a) at Kyoto University. The fundamental
difference between the HIMA model and the MUSTEM model is their dimensions of deterioration types and condition
states. In the MUSTEM model, only single dimension of condition stages is used. Whilst, in the HIMA model, the authors
proposed to use three dimensions of crack initiation with multiple discrete condition states.

In the HIMA model, cracks are classified into three types: horizontal crack, longitudinal crack, and alligator crack.
The deterioration of each cracking type is expressed as Markov transition probabilities (m.t.p) among its damage level.
Based on cracking types and their corresponding damage levels, a multi-dimension discrete condition states are defined
(Table 1). The authors have successfully conducted an empirical study of the model on a set of cracking data of Japanese
national roads to prove the applicability and usefulness ofthe model. Moreover, the authors concluded that the model is
more effective under the condition of having sufficient amount of data concerning each cracking type and its damage level.
However, the HIMA model has a default assumption that no selection bias and measurement errors exist in monitoring
activities concerning the measurement of cracking types and their damage levels.

The present paper proposes a new deterioration forecastingmodel in the streamline of Markov deterioration forecast-
ing models for infrastructure asset management. The model is a novel extension of the HIMA model, which expresses the
cracking condition states on pavement structural surface in multiple directions. We discuss the bias in selecting cracking
condition states as a competitive process, which was not yetdeveloped with the HIMA model, and propose a numerical
solution using Bayesian estimation and Markov Chain Monte Carlo (MCMC) simulation. To test our model, we apply an
empirical study on a set of cracking data of national road system in Japan.

Following section gives a brief review of the HIMA model, which discussed cracking process and selection bias in
monitoring and management practices in the PMS. Section 3 summaries important formulation of the MUSTEM model,
which is considered as the core of the HIMA model and the proposed model in this paper. Section 4 includes the math-
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Table 1: Condition states concerning the cracking modes.
Damage levels Cracking types (l)

Longitudinal crack Horizontal crack Alligator crack
i = 0 (0,0)
i = 1 (1,1) (1,2) (1,3)
i = 2 (2,1) (2,2) (2,3)
i = 3 (3,1) (3,2) (3,3)

ematical formulation of the new model. Numerical solution as estimation method for the proposed model is detailed in
Section 5. Section 6 includes an empirical example. The lastsection concludes the paper and gives recommendation for
practical use of the model and future study.

2. Cracking Process and Selection Bias

2.1. Cracking and deterioration condition states

Cracks appears due to the combination of various aspects andtherefore being considered as a complex process. There
always exists a certain level of uncertainty in forecastingcracking condition states. In view of management, ambiguity in
capturing the true cracking types and the damage levels could lead to non optimal intervention strategies. For example,
cracks are observed in longitudinal direction, horizontaldirection, and in alligator crack. Depending on cracking types
and actual damage levels, interventions activities are then designated. However, interventions are arranged on regular
basis, and thus interventions cannot be spontaneously applied at right time and right place to heal all cracking types. In
addition, an interventions activity, designated for mending horizontal cracks, do not genuinely heal longitudinal cracks.
As a result, expected values of longitudinal cracks could beneglected. Thus, it is true to state that using a single cracking
type for making decision is not an optimal choice.

In the paper of Kaito et al. (2007), the authors developed theHIMA model to address the multiple progression of
cracking. In the cited paper, cracking process of road surface is described by means of condition states with two variables,
damage leveli and cracking typel. Cracking type is expressed by variablel (l = 0, · · · , L), with l = 0 indicating no sign of
crack. Cracking typel (l = 1, · · · , L) can be of longitudinal crack, horizontal crack, and alligator crack. Damage level is
defined as state variablei (i = 0,1, · · · , I ), representing deterioration level of respective cracking type. Damage leveli = 0
when there is no sign of deterioration and damage levelI is referred as “absorbing state”, which demands an immediate
intervention. Under this assumption, overall deterioration of crack can be relatively described by a pair of state variables,
which is defined as “pair condition state” (i, l). Condition state (0,0) and (I , L) respectively refer to no sign of crack and
“absorbing condition state” of a road section. Descriptionof cracking types and damage levels are given in Table 1.

2.2. Selection bias and representation matter

In many PMSs, an entire road length is often divided into smaller sections (sk, k = 1, · · · ,K) or divisions for con-
veniences of monitoring and management (Fig. 1). Within a road section, cracks might occur in several types (l), with
different damage levels (i). In practice, inspectors often decide to use the worst damage level, corresponding to a spe-
cific cracking type, to be the representative condition state. However, there is no guarantee which condition state is the
worst. This practice exposes as a shortcoming that true information of other cracking types is omitted, remaining as
hidden information. For example, as shown in Table 1, the progress of crack on a road section is described by 3 condition
states: longitudinal crack (2,1), horizontal crack (2,2), and alligator crack (1,3)). It is not certain at a point in time to
verify which condition state is the best representative among these three. However, it is often the case that inspectors
select condition state (2,2) (horizontal crack) to be the representative value for deterioration of cracks of that road section.
Given that reality, true information of other cracking types (longitudinal crack (2,1) and alligator crack (1,3)) is neglected
and not recorded in the database. This problem could result in non-optimal estimation results of deterioration and also
influence the true likelihood of the OISs.

The process to select representative condition states as mentioned is viewed as a bias selection process. The selection
bias is a type of systematic measurement errors, which deemsunsolvable by using conventional errors elimination tech-
niques (Kobayashi et al., 2012b). The bias selection process in the practice of inspections therefore targets only a typical
cracking type and its damage level. However, in our paper, wedevelop a model to capture the cracking progress of not
only typical crack but also other cracking types. The missing information of cracking types, which were not selected and
recorded, and their corresponding damage levels, is addressed. In the paper, condition states concerning missing cracking
types and their damage levels are regarded as “latent” or “hidden” variables.

The selection bias in defining a representative cracking type can be interpreted from Fig. 1. As shown in the figure, a
road section can be divided into smaller rectangular areassk = (s1, · · · , sK). Measurement of cracks at any inspection time,
in general, is carried out on each rectangular areask. The results of different cracking types and their damage level are then
weighted (or aggregated) to become the means, which represent the overall cracking condition states of the road section.
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Figure 1: Measured areas in a road section and the value distribution of cracking types
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Figure 2: Deterioration process

We denote the mean values of damage levels of longitudinal crack and horizontal crack asα andβ, respectively. The value
distributions of longitudinal crack and horizontal crack around their means can be interpreted also from the figure. The
solid distribution curve represents the value distribution of longitudinal crack, and the two dotted lines represent value
distribution of horizontal crack at a inspection time. Due to uncertainty, at any inspection time, the means of distribution
of horizontal crackβ, can be either greater or smaller than the mean of longitudinal crackα.

The selection of damage level and typical cracking type is assumed as follows:

• at any inspection time, if damage level of horizontal crack follows the pattern of solid distribution curve, which has
mean value ofα, thenα is selected as the representative damage level.

• On the other hand, if damage level of horizontal crack progresses as like in the dotted distribution curve, which has
mean value ofβ, thenβ is selected as the representative damage level.

As a matter of fact, the development of horizontal crack and longitudinal crack varies differently. Hence, the mean value
of horizontal crack (dotted distribution curves) is fluctuated, either with value ofβ or β′. This type of selecting the
representation of damage level is considered as a competingprocess among damage levels and types of cracking.

In order to address the competitive crack selection process, it is important to develop a new methodology that takes
into account the selection bias. The new methodology shouldbe able to estimate damage levels of hidden cracking types,
especially under the situations of having only partial or incomplete monitoring data, which is quite popular in many PMSs.

3. The MUSTEM model

In this section, we summary the research of Tsuda et al. (2006); Kobayashi et al. (2012a), which proposes a modeling
approach to estimate the Markov transition probability (m.t.p) based on historical monitoring data. Careful readers are
recommended to refer to the original paper for greater details of the methodology.

It is assumed that the deterioration of a road section follows the path shown in Fig. 2. In the figure, timeτ represents
the actual time on a calendar (hereafter referred as “time”). Deterioration of a road section can be represented by discrete
condition statei(i = 1, .., J), with i = 1 as initial condition state (when structure is new) andi = J as absorbing condition
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state. TimeτA andτB are inspection times, while timeτi is any arbitrary time in between. Duration between two inspection
times isZ. Given monitoring data of two inspection timesτA andτB, the m.t.p is described as follows:

Prob[h(τB) = j | h(τA) = i] = pi j (1)

Suppose that condition state changes fromi to i + 1 at timeτi (timing yC). At that time, the duration of condition state
i can be expressed by the following equation:ζi = τi − τi−1 = yC. Assume that the durationζi of condition statei is a
random variable, and is subjected to the probability density function fi(ζi) and the distribution functionFi(ζi). Here, the
domain of the durationζi is [0,∞). The following expression is defined from the definition of distribution function:

Fi(yi) =
∫ yi

0
fi(ζi)dζi (2)

The distribution functionFi(yi) represents the cumulative probability of the change of thecondition state fromi to i + 1
in the period from the initial timingyi = 0 (timeτi−1), at which the condition state has becomei, to the timingyi (time
τi−1 + yi). Accordingly, the probabilityF̃i(yi) of remaining at condition statei from the initial timingyi = 0 to the sample
timing yi ∈ [0,∞) can be expressed by the following equation, using the cumulative probability of the change of the
condition state fromi to i + 1 until timingyi :

Prob{ζi ≥ yi} = F̃i(yi) = 1− Fi(yi) (3)

The conditional probability of the event that the road section remains in condition statei until timing yi and change to
condition statei + 1 in the period [yi , yi + ∆yi) is defined as:

λi(yi)∆yi =
fi(yi)∆yi

F̃i(yi)
(4)

The instantaneous rateλi(yi) of the change in the condition state fromi to i + 1 at timingyi is called a hazard function. By
using a hazard function suited for the assumed deterioration process, it is possible to describe the evolution of deterioration
over time.

Under the assumption that the Markov characteristics concerning the deterioration processes of the road section do
not depend on the history of deterioration and the hazard function is constantθi > 0, in another words, the hazard function
is independent of the timingyi , following equation is defined:

λi(yi) = θi (5)

Using the hazard functionλi(yi) = θi , the probability of the even that condition statei remains over a durationyi is further
described as:

F̃i(yi) = exp

[

−

∫ yi

0
λi(u)du

]

= exp(−θiyi) (6)

The survival probability function is identical to the transition probability pii when the durationyi equals to intervalz. By
defining the subsequent conditional probability of condition statej to i, with respect toz, a general mathematical formula
for estimating the m.t.ppi j is formulated:

pi j (z) = Prob[h(τB) = j|h(τA) = i] =
j
∑

k=i

k−1
∏

m=i

θm

θm − θk

j−1
∏

m=k

θm

θm+1 − θk
exp(−θkz) (7)

where there are the following conditions:














∏k−1
m=i

θm
θm−θk

= 1 at (k ≤ i + 1)
∏ j−1

m=k
θm

θm+1−θk
= 1 at (k ≥ j)

(8)

In addition, with regard to the m.t.p from any condition state to absorbing condition statepiJ, following equation is used:

piJ(z) = 1−
J−1
∑

j=i

pi j (z) (i = 1, · · · , J − 1) (9)

4. Formulation of the competing Markov hazard (COHA) model

4.1. Competing Markov transition probabilities

Cracks could appear on the surface of a road section after theroad section is newly paved or intervened. In order to
uphold a certain service level and maintain riding quality,ISs need to be evaluated for future management. It is assumed
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that immediately after an intervention, surface conditionof the road section is renewed, with condition state (i, l) = (0,0).
To visualize the deterioration of cracks, we defineτ0, with y = 0, as starting point immediately after an intervention.
Initial condition state is updated as (0,0) at timeτ0. In next inspection time, also the time of next intervention(if required),
passing duration is assumed asz, with y + z as time indication of when measurement being counted. The uncertainty of
deterioration progress with respect to cracking is described by means of transition probability among condition states in
that period.

Condition states of a road surface in durationy is defined as state variableh(y) = (i, l) (i = 0, · · · , I ; l = 0, · · · , L). After
any arbitrary time durationy + z, state variable becomesh(y + z) = ( j,m) ( j = 0, · · · , I ; m = 0, · · · , L). Thus, following
transition probability is defined:

Prob[h(y+ z) = ( j,m)|h(y) = (i, l)] =
Prob[h(y+ z) = ( j,m),h(y) = (i, l)]

Prob[h(y) = (i, l)]
= πil , jm(y, z). (10)

The m.t.pπil , jm(y, z) is estimated based on the condition states of road sections, which are recorded as a result of the
competitive selection among damage levels and cracking types. Therefore, we refer the m.t.pπil , jm(y, z) as competing
m.t.p. It is noted that the m.t.p of the MUSTEM model depends on transition durationz and timey. However, the
competing m.t.p of the COHA is defined based only on the information of typical cracking type and damage level. It
should be also noted that the competing m.t.p might not satisfy the condition of homogeneous m.t.p with respect to
hidden cracking type as earlier mentioned in section 2. Onlyif information of all condition states is available, had the
following competing m.t.p assured.

Π(y, z) =

























π00(y, z) · · · π0I (y, z)
...

. . .
...

0 · · · πII (y, z)

























. (11)

Where0 is a block procession, andπi j (y, z) (i, j = 0, · · · , I ) satisfies following conditions:

π00(y, z) = π00,00(y, z),

π0 j(y, z) = ( π00, j1(y, z) · · · π00, jL(y, z) ),

πi j (y, z) =

























πi1, j1(y, z) · · · πi1, jL(y, z)
...

. . .
...

πiL, j1(y, z) · · · πiL, jL(y, z)

























. (12)

Eq. (11) shows the competing m.t.p between two consecutive inspection timest = y andt + 1 = y+ z. Probabilistically,
properties of the competing m.t.p vary upon different inspection period. If an intervention has not been applied, cracking
happens in natural process. Hence, conditionπil , jm(y, z) = 0 (i > j) must be satisfied. Moreover, summation of all
properties in a row of transition probability matrix must beequal to 1 as

∑I
j=i
∑L

m=0 πil , jm(y, z) = 1. Following conditions
are obligated as rules of the competing m.t.p, withπIm,Im(y, z) = 1 for absorbing state of damage levelI .

πil , jm(y, z) ≥ 0
πil , jm(y, z) = 0 (i > j)
∑I

j=i
∑L

m=0 πil , jm(y, z) = 1



















. (13)

The competing m.t.p describes the transition among condition states of cracks based on the selection of typical cracking
type and damage level. The selection and estimation of competing m.t.p for each road section is mutually independent
from other sections.

In order to obtain the explicit mathematical formula for thecompeting m.t.p, we extend the formula in Eq. (7) for the
case of cracking. We assumel∗ from the rangel (l = 1, · · · , L) as an example of cracking type. Transition concerning
damage leveli is described as (0,0)→ (1, l∗)→ · · · → (I , l∗). Hazard rateθil ∗ is defined as transition from condition state
(i, l∗) to (i + 1, l∗). For transition from initial condition state (0,0) to (1, l∗), hazard rate is expressed asθ0l∗ . Remaining
duration in condition state (i, l∗) (i = 0, · · · , I−1), hereafter referred as “life expectancy” of condition state (i, l∗), is defined
by means of a stochastic variableζil ∗ , with its probability density functionfil ∗ (ζil ∗ ) and distribution functionFil ∗(ζil ∗ ). In
the period (t,t + 1), the probability density that condition state (i, l∗) disappears at the end of the period is expressed by
hazard functionλil ∗ (zil ∗), with elapsed timezil ∗ . As a result, the competing m.t.p is defined as:

pl∗
ii (z) = Prob[h(τB) = (i, l∗)|h(τA) = (i, l∗)] = exp(−θil ∗z). (14-a)

pl∗
i j (z) = Prob[h(τB) = ( j, l∗)|h(τA) = (i, l∗)] =

j
∑

k=i

k−1
∏

m=i

θml∗

θml∗ − θkl∗

j−1
∏

m=k

θml∗

θ(m+1)l∗ − θkl∗
exp(−θkl∗z) (14-b)
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Eq. (14-b) satisfies following conditions:














∏k−1
m=i

θml∗

θml∗−θkl∗
= 1 (k ≤ i + 1)

∏ j−1
m=k

θml∗

θ(m+1)l∗−θkl∗
= 1 (k ≥ j)

.

Using hazard rateθil ∗ , we defineRMDas an important management indicator (RMDi,l∗ stands for Expected Remaining
Duration of damagei of cracking typel∗). The indicator reflects the duration, in which damage leveli survives, given a
condition that it has been observed in previous inspection time. Formula ofRMDi,l∗ is actually analogous to the formula
of survival functionF̃il ∗ in infinite domain (Lancaster, 1990):

RMDil ∗ =

∫ ∞

0
F̃il (z|θil ∗ )dz= θ−1

il ∗ . (15)

Expected life expectancy (denoted asETjl ∗ ) of damage levelj (> 1), if considering all damage levelsi(i < j) of cracking
type l∗, is thus a summation of all transition duration from every damage leveli.

ETjl ∗ =

j
∑

i=1

θ−1
il ∗ . (16)

4.2. The COHA model.

In previous section,l∗ is an example of cracking type. In this section, we consider all cracking types in the range
n (n = 1, · · · , L). The cracking process of an individual cracking type is independent from other cracking types. Selection
method for representative condition state follows two rules. The first rule applies to select the worst damage level among
cracking types. The second rule applies when road section exposes with identical damage level for all cracking types and
cracking type with higher index value is selected. Rules to decide condition state (i, l) can be expressible as:

{

i = max{in (n = 1, · · · , L)}
l = max{n|in = i (n = 1, · · · , L)}

. (17)

Eq. (17) expresses recorded data, which is considered as a result of bias selection process. In addition, we denotein (n , l)
as damage level of hidden cracking typen.

{

in ≤ i (n = 1, · · · , l − 1)
in < i (n = l + 1, · · · , L)

. (18)

Hazard rateθ00, which infers the change of damage leveli from 0 to 1, is defined in the whole range of cracking type
(1,n) (n = 1, · · · , L):

θ00 =

L
∑

n=1

θ0n. (19)

Condition state variables at timet = τA and t = τB areh(τA) = (i, l) andh(τB) = ( j,m) respectively. The transition of
condition states from (i, l) to ( j,m) in durationz= τB − τA is expressed as the m.t.p in following subsections:

4.2.1. when i= j = 0
In the case that condition state change from (0,0) to (1,n) (n = 1, · · · , L), hazard rate is defined in Eq. (19). The m.t.p

π00,00(y, z) over durationz is then defined:

π00,00(y, z) = exp















−

L
∑

n=1

θ0,nz















. (20)

The competing m.t.pπ00,00(y, z) does not depend on timet, but on durationz.

4.2.2. when j, 0 and l, m
The competing m.t.p is defined similarly as in Eq. (10).

πil , jm(y, z) =
Prob[h(y+ z) = ( j,m),h(y) = (i, l)]

Prob[h(y) = (i, l)]
. (21)

Formulation of the nominator in Eq. (21) can be described in three different scenarios as: 1) cracking typel, observed at
time τA, is not selected as representative one at timeτB; 2) cracking typem, observed at timeτB, is not appeared at time
τA; 3) both scenarios 1 and 2 occurs simultaneously.
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In scenario 1, at timeτA, the probability of damage leveli with cracking typel is pl
0i(y). To satisfy the assumption that

at timeτB, damage levelj l is not chosen, following condition must be satisfied:
{

i ≤ j l ≤ j when l< m
i ≤ j l < j when l> m

. (22)

Under this assumption, probability for scenario 1 to happenis defined as:

P1(y, z) = pl
0i(y)

j̃ l
∑

t=i

pl
it (z). (23)

Probability pl
it (z) is considered in the entire range of damage levels fromi to t in durationz, with its detailed properties

presented in Eqs. (14-a) and (14-b). The affixing character̃j l has following meaning:

j̃ l =

{

j l < m
j − 1 l > m

. (24)

In scenario 2, at timeτA, following condition must be satisfied to hold the assumption m, l, meaning that cracking type
m is not chosen at timeτA.

{

im ≤ i when l> m
im < i when l< m

. (25)

Thus, the simultaneous occurrence probability for cracking typem in damage levelj at timeτB is formulated as:

P2(y, z) =
ĩm
∑

s=0

pm
0s(y)pm

s j(z). (26)

In scenario 3, the damage level of cracking typen should satisfy
{

in ≤ i when l > n
in < i when l < n

, and

{

jn ≤ j when m> n
jn < j when m< n

, (27)

and following occurrence probability for scenario 3 is obtained:

P3(y, z) =
L
∏

n=1,,l,,m

ĩn
∑

s=0

j̃n
∑

t=s

pn
0s(y)pn

st(z). (28)

Product sign
∏

n=1,,l,,m in Eq. (28) concerns cracking typen other than cracking typesl andm. Therefore, the nominator
of Eq. (21) is further expressed as

Prob[h(y+ z) = ( j,m),h(y) = (i, l)] =



















L
∏

n=1,,l,,m

ĩn
∑

s=0

j̃n
∑

t=s

pn
0s(y)pn

st(z)





































pl
0i(y)

j̃ l
∑

t=i

pl
it (z)





































ĩm
∑

s=0

pm
0s(y)pm

s j(z)



















. (29)

The denominator of Eq. (21) concerns only the probability ofcondition state (i, l) at timeτA. If transition from initial time
is considered, following probability is defined:

Prob[h(y) = (i, l)] = pl
0i(y)

L
∏

n=1,,l

ĩn
∑

s=0

pn
0s(y). (30)

Finally, the explicit form of competing m.t.pπil , jm(y, z) is obtained:

πil , jm(y, z) =



















L
∏

n=1,,l,,m

ĩn
∑

s=0

j̃n
∑

t=s

pn
0s(y)pn

st(z)





































j̃ l
∑

t=i

pl
it (z)





































ĩm
∑

s=0

pm
0s(y)pm

s j(z)





































L
∏

n=1,,l

ĩn
∑

s=0

pn
0s(y)



















−1

. (31)

It is noted that the competing m.t.p depends not only onz but alsoy. As earlier mentioned in section 3, the m.t.p of the
MUSTEM model depends only onz (Eq. (7)).

4.2.3. when j, 0, l = m
This assumption occurs under two scenarios: 1) cracking type l is in damage levelsi and j respectively at timeτA and

τB; 2) at timeτA, damage level of cracking typel is i. However, in timeτB, damage levelj is observed simultaneously
for cracking typesl andm. To differentiate the description with the scenarios in previous section, the sign [′] is used in
following paragraphs.
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In scenario 1′, we apply Eqs. (14-a) and (14-b) for the probability of cracking typel, with its damage leveli and j at
timeτA andτB respectively.

P1′ (y, z) = pl
0 j(y)pl

i j (z). (32)

In scenario 2′, conditions in Eqs. (22) and (25) must be satisfied, and thus,the probability of scenario 2′ is defined:

P2′ (y, z) =
L
∏

n=1,,l

ĩn
∑

s=0

j̃n
∑

t=s

pn
0s(y)pn

st(z). (33)

Probability Prob[h(y) = (i, l)], which happens at timeτA = y is also defined as

Prob[h(y) = (i, l)] = pl
0 j(y)

L
∏

n=1,,l

ĩn
∑

s=0

p0s(y). (34)

To this point, an explicit mathematical form for competing m.t.p is specified:

πil , jl (y, z) =



















L
∏

n=1,,l

ĩn
∑

s=0

j̃n
∑

t=s

pn
0s(y)pn

st(z)



















pl
i j (z)



















L
∏

n=1,,l

ĩn
∑

s=0

pn
0s(y)



















−1

. (35)

the competing m.t.pπil , jm(y, z) is expressible through the m.t.ppl
i j (z).

To this point, it is our target to estimate themodel’s parameters, which are embedded in the likelihood function of the
m.t.p in Eq. (35), based on inspection data. One way to estimate the model’s parameters is using the maximum likelihood
estimation (MLE) method. However, It is likely impossible to use the MLE method as the likelihood function involves a
high-order of integration, which limits the derivation forthe Jacobian matrix (first order derivative) and Hessian matrix
(second order derivative). To overcome this problem, in section 5, we propose a methodology using frontier stochastic
approach with Bayesian estimation and MCMC simulation.

4.3. Prediction of non-homogeneous Markov distribution.

The competing m.t.p has Markov property in its form. However, the competing m.t.p is not purely homogeneous
Markov process. In fact, it is regarded as non-homogeneous Markov process. To describe this fact, we express the
competing m.t.p in three respective initial timesyA, yB, andyC, with durationsτA, τB, andτC respectively. Time interval
is denoted asz. If competing m.t.p satisfies homogenous Markov process, following equation can be derived:

Prob[h(yC) = ( j,m)|h(yA) = (i, l)]

=

L
∏

n=1,,l

i
∑

s=0

Prob[h(yC) = ( j,m)|h(yB) = (k,n)] · Prob[h(yB) = (k,n)|h(yA) = (i, l)]. (36)

On the other hand, if considering two time intervals 2z in Markov process, following equation cannot be derived forthe
case of two time intervals 2z. In Eqs. (31) and (35), there is an evidence that competing m.t.p depends not onlyz but also
ony.

πil , jm(yA,2z) =
I
∑

k=1

L
∑

n=1

πil ,kn(yA, z)πkn, jm(yB, z). (37)

For any arbitrary time intervalz, another explicit mathematical form should be developed inline with Eqs. (31) and (35).
We define probabilityPil (y) for the event “condition state (i, l) (i = 0, · · · , I ; l = 0, · · · , L) occurs at a certain time with

elapsed timey”.

Pil (y) =



















∏

n,l

ĩ l
∑

in=0

pn
0in

(y)



















pl
0i(y). (38)

In addition, the probability that damage leveli of any cracking type occurs in elapsed timey after any intervention is
defined as maximum damage level probabilityPi(y).

P∗i (y) =
L
∑

l=1

Pil (y). (39)
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Life expectancyET( j) of damage levelj after any intervention is formulated as:

ET( j) =
∫ ∞

0
y

j−1
∑

i=0

P∗i (y)dy. (40)

5. Estimation Method

5.1. MCMC Method.

In statistic with Bayesian inference, prior and posterior probability are employed with aim to estimate the values
of model’s parameters. However, in actual analysis, it is hard to define a prior probability distribution, even with a
simple condition state hazard model (Ibrahim et al., 2001).Methods to overcome the problems in the assumption of
prior probability distribution often require numerical analysis with multi-dimensional integration, and thus remaining as
a limitation in Bayesian estimation.

In recent years, an appealing solution to the problems in Bayesian estimation has been proposed, with the application
of MCMC simulation. The MCMC simulation technique does not require a high level of derivative and multi-dimensional
integration of model’s objective functions (Robert, 1996). As a result, estimation results, in a great number of applied
statistic research, have been improved through the combination of Bayesian estimation and MCMC simulation.

In MCMC simulation, Gibbs sampling and Metropolis Hastings(Metropolis-Hastings or MH) techniques have been
extensively discussed (Robert, 1996). Reference to research on image restoration is a good example of MCMC simulation
(Geman and Geman, 1984). Of that study, the algorithm of Gibbs sampling was used to estimate the posterior distribution
in Bayesian estimation. In MH law, the iterative parameterβ is defined by repeatedly generating random numbers through
the conditional probability density function.

Regarding application of Bayesian estimation and MCMC method in infrastructure management, the authors of this
paper has developed a hidden Markov model for elimination ofselection bias Kobayashi et al. (2012b). The use of
Bayesian estimation and MCMC method has showed a great advantage over the conventional MLE approach in the case
of having complete likelihood function with multiple integrations. Following sections detail our numerical solutionto
overcome the challanges in estimation of the COHA model’s parameters.

5.2. Formulation

Two visual inspections are conducted for each sectionk of the entire road system (withK is the total number of road
sections). Condition states being observed at two inspection timeτkA = yk andτkB = yk + zk areh(yk) andh(yk + zk)
respectively. Durationzk is time interval between two inspections times. Based on actual observed condition states, a
dummy variableδkil , jm is assumed, with following characteristics:

δkil , jm =

{

1 h(yk) = (i, l) and h(yk + zk) = ( j,m)
0 otherwise

. (41)

To further describe the information of samplek, a characteristic vectorxk = (xk
1, · · · , x

k
M), representing characteristic

variables influencing on cracking progress is also defined. For instance, characteristic variablexk
m (m = 1, · · · ,M) is

referred as a characteristic variable with its numbering indexm. Overall information on samplek can be summarized in
vectorξk = (δk, yk, zk, xk), with δk = δkil , jm is a vector of dummy variable. We pay attention to damage level i and cracking

type l. The formulation of hazard rateθkil of samplek, with its characteristic variablexk = (xk
1, · · · , x

k
M), is then defined as:

θkil = exp(xkβ′il ), (42)

with βil = (β1
il , · · · , β

M
il ) is the line vector of unknown parametersβm

il (m = 1, · · · ,M). The sign′ indicates the vector
transposition. The m.t.ppl

i j of cracking typel is expressible as a function ofzk, xk, andβil aspl
i j (z

k, xk : βil ). As mentioned

in previous section, competing m.t.pπil , jm comprises of two componentspl
i j (y

k, xk : βil ) andpn
i j (z

k, xk : βil ) (n , l). Thus,

it can also be described asπil , jm(yk, zk, xk : β), with β = (β01, · · · ,βil , · · · ,βI−1L).

5.3. Complete Likelihood Function

In the COHA model, competing m.t.pπil , jm is defined by means of condition states of both observed typical cracking
type and hidden cracking type. Hence, the simultaneous occurrence probability (likelihood)L(β : ξ̄) at the time of
observing the sampling information̄ξ = (ξ̄1

, · · · , ξ̄
K) in entireK road sections can be defined as

L(β : ξ̄) =
I−1
∏

i=0

L
∏

l=0

I
∏

j=i

L
∏

m=0

K
∏

k=1

{

πil , jm(ȳk, z̄k, x̄k : β)
}δ̄kil , jm
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=

I−1
∏

i=0

L
∏

l=0

I
∏

j=i

K
∏

k=1























L
∏

m=0



















L
∏

n=1,,l

ĩn
∑

s=0

pn
0s(ȳ

k)



















δ̄kil , jm






















−1 




















L
∏

m=0,,l



















L
∏

n=1,,l,,m

ĩn
∑

s=0

j̃n
∑

t=s

pn
0s(ȳ

k)pn
st(z̄

k)



















δ̄kil , jm



















j̃ l
∑

t=i

pl
it (z̄

k)



















δ̄kil , jm


















ĩm
∑

s=0

pm
0s(ȳ

k)pm
s j(z̄

k)



















δ̄kil , jm








































L
∏

n=1,,l

ĩn
∑

s=0

j̃n
∑

t=s

pn
0s(ȳ

k)pn
st(z̄

k)



















δ̄kil , jl

{pl
i j (z̄

k)}δ̄
k
il , jl , (43)

wherepl
i j (z̄

k) = pl
i j (z̄

k, x̄k : βil ). Estimating a set of unknown parametersβ to maximize the likelihood of function (43) is
our objective.

In freqenties statistics, the model’s parameters are oftenestimated by employing regression methods. The method of
Maximum Likelhihood Estimation (MLE) is among the most popular used in frequentist statistics. However, the MLE
method has its limitation when the objective function (or likelihood function) of a statistical model is in the form of high-
order dimension and multiple integrations (Andrew et al., 2006; Dani and Hedibert, 2006; Jeff, 2006). This limitation
appears to be true with the COHA model since the likelihood function of the model is of high dimensions. In order to
overcome the limitation of the MLE method, Bayesian statistic is recommended (Geman and Geman, 1984; Capper et al.,
2005; Gamerman and Lopes, 2006; Kobayashi et al., 2012a,b).

In Bayesian estimation, Robert (1996) recommended to use complete likelihood function instead of conventional
likelihood function. To come up with the complete likelihood function in our model, we assume a latent variablesk

n to
represent the damage level of cracking typen, which occurs at timeτkA. In another words, the damage level of road section
k, with respect to cracking typel, is sk = (sk

1, · · · , s
k
i , · · · , s

k
L) at timeτkA. Damage leveli has its potential range of values as

follows:
{

0 ≤ sk
n ≤ i when n< l

0 ≤ sk
n < i when n> l

. (44)

Supposing that latent variable vectors = (s1, · · · , sK) is measurable, the likelihood function in Eq. (43) can be further
defined:

L̃(s,β : ξ̄) =
I−1
∏

i=0

L
∏

l=0

I
∏

j=i

K
∏

k=1




















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∏
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
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
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















δ̄kil , jl
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i j (z̄

k)
}δ̄kil , jl
. (45)

Eq. (45) is referred as the complete likelihood function in Bayesian statistic. The complete likelihood function contains
a latent variables. However, by assuming the posterior distribution ofs through its prior distribution, it is possible to
generate the value ofs. Following equation describes the posterior distributionof s.

Prob{sk
n = s|sk

−n, ξ̄ : β} =
L̃(sk

n = s, sk
−n,β : ξ̄)

∑ĩn
s=0 L̃(sk

n = s, sk
−n,β : ξ̄)

=
pn

0s(ȳ
k, x̄k : β0s)

∑ĩn
s=0 pn

0s(ȳ
k, x̄k : β0s)

. (46)

5.4. Metropolis Hastings Algorithm.

In this study, we apply Metropolis Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) to generate
the sample of unknown parameterβ. In the algorithm, a conjugate distribution to be used as theprior distribution of
target parameter needs to be defined. Sampled values ofβ are then generated using random walk process. In our study,
multi-dimensional normal distribution with mean 0 is used as the conjugate distribution.

β
m(t)
il − β

m(t−1)
il ∼ N(0, (σm

il )2). (47)

In Eq. (47),t is frequency of sample and standard deviation (σm
il )2 can be of any arbitrary set. The steps on generating

values ofβ using MH method with random walk process are briefly described in following steps:

Step 1 - Setting up initial value.
Value of standard deviationσm

il in the conjugate distribution (Eq. (47)) is an arbitrary set. The initial value ofs(0) =

(s(1,0), · · · , s(K,0)) is selected under the condition in Eq. (44). The initial value ofβ(0) is also an arbitrary set. Through the
generation of the MH algorithm, the influence of initial values on estimation results will gradually weaken. In our study,
sampling frequencyt is equal to 1.
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Step 2 - Sampling latent variables(k,t).
By applying Eq. (46), we can calculate new value ofs(k,t) through using the obtained values(k,t−1) andβ(t−1) in step

5.4. The m.t.ppl
i j (ȳ

k) is also estimated in this step.

Step 3 - Sampling unknown parameterβ(t).
The sample for unknown parameter is generated through the random walk process in the MH algorithm. To begin

with, an affixing character of each element of parameter vectorβ(t−1) = (β1,(t−1)
00 , · · · ,β

M,(t−1)
I−1L ) is redefined and rewritten as

β(t−1) = (β(t−1)
1 , · · · , β

(t−1)
J ). Following procedures explain the sampling process:

Step 3.1:s(k,t) andβ(t−1) are assumed to be available from previous steps.
Step 3.2: To increase the loop iteration (frequency)t and to define sub-domain of damage levelq:

β(t,q) = (βt,q
1 , · · · , β

t,q
q , β

t,q−1
q+1 , · · · , β

t,q−1
J )′. (48)

In addition, step-width vectorξt
q = (0, · · · ,0, ξtq,0, · · · ,0)′, with elementi in its value ofξkq, is defined. The approval of

expected (on average) step-width in random walk process follows normal distribution with mean 0.

ξtq ∼ N(0, (σq)2). (49)

As a result, the standard deviation can be estimated:

α(t,q) = min

[

L̃(s(t),β(t,q), ξ̄)

L̃(s(t),β(t,q−1), ξ̄)
,1

]

, (50)

with (L̃) as the completed likelihood function.
Step 3.3: Random numberu ∼ U(0,1) is generated throught uniform distributionU(0,1) in [0,1]. Unknown parameter
β(t,q) is decided according to the following rules:

β(t,q) =

{

β(t,q) + ξt
q i f u ≤ α(t,q)

β(t,q) otherwise
. (51)

The above-mentioned procedure is applied withq from q = 1 toq = L.

Step 4-Updating Parameter
Updated valueβ(t) is recorded at any iteration and compared for acceptance or rejection. If t ≤ t as t = t + 1, the

program returns to Step 2. Otherwise, the algorithm stops.
It is likely that initial values of parameters remains only in the early stages of iteration process. Whent increases in a

high number, reaching a certain numberst, we can define our preferable value ofβ(t) (t = t+1, t+2, · · · , t) as the outcome.

5.5. Statistical Inference on Posterior Distribution.

Statistical test for parameterβ can be carried out based on the generated samples through theMCMC simulation.
However, in the simulation, probability density functionπ(β|ξ̄) cannot be considered as an analytical function. Therefore,
instead of using full parametric approach for statistical test, non-parametric approach is recommended Robert (1996).
According to MH method, among generated samplesβ(t) (t = 1, · · · , t), the firstt samples are removed. A new set of
samples is then defined as a replacement, with its subscriptionsM = {t + 1, · · · , t). By applying this approach, the joint
probability distribution functionG(β) is defined:

G(β) =
#{β(t) ≤ β, t ∈ M}

t − t
, (52)

where #{β(t) ≤ β, t ∈ M} is regarded as the total number of samples, from which logical expressionβ(t) ≤ β, t ∈ M is
satisfied. Moreover, expected values ofζ̃(β) and standard covariancẽΣ(β) of the posterior distribution ofβ are defined
respectively as:

ζ̃(β) = (ζ̃(β1), · · · , ζ̃(βJ))
′ =

( t
∑

t=t+1

β
(t)
1

t − t
, · · · ,

t
∑

t=t+1

β
(t)
J

t − t

)′

, (53-a)

Σ̃(β) =

























σ̃2(β1) · · · σ̃(β1βJ)
...

. . .
...

σ̃(βJβ1) · · · σ̃2(βJ)

























, (53-b)
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Table 2: Cracking Condition States.
Condition states Description
0,0 (0) New condition states
1,1 (1) longitudinal crack Small crack
2,1 (2) Medium crack
3,1 (3) Large crack
1,2 (4) Horizontal crack Small crack
2,2 (5) Medium crack
3,2 (6) Large crack
1,3 (7) Alligator crack Small crack
2,3 (8) Medium crack
3,3 (9) Large crack

Note) Figures in the parentheses shows measured condition states of cracks.

where

σ̃2(βi) =
t
∑

t=t+1

{β
(t)
i − ζ̃(βi)}2

t − t
, (54-a)

σ̃(βiβ j) =
t
∑

t=t+1

{β
(t)
i − ζ̃(βi)}{β

(t)
j − ζ̃(β j)}

t − t
. (54-b)

The credible interval of parameterβ is examined and determined by using generated samples. For example, the 100(1−
2ε)% credible interval of parameterβ is defined by using statistical sampling orderβε

j
, β
ε

j ( j = 1, · · · , J) with βε
j
< β j < β

ε

j :

βε
j
= arg max

β∗j















#{β(t)
j ≤ β

∗
j , t ∈ M}

t − t
≤ ε















, (55-a)

β
ε

j = arg min
β∗∗j















#{β(t)
j ≥ β

∗∗
j , t ∈ M}

t − t
≤ ε















. (55-b)

6. Empirical Study

6.1. Data and definition of condition states

We conducted an empirical application of the HIMA model using a representative set of cracking data of road sections
in Japan. Data was recorded during the period from 1992 to 2004 and consisted of three consecutive inspection data
on same road sections. Total numbers of investigated samples are 2,751, with each sample representing for an average
sectional length of 100 meters. Beside the percentage values of cracks measured in three inspection times, values of
variables such as traffic volume, ambient temperature, thickness of road sections were also recorded.

In the study, cracks are classified into three types (l): longitudinal crack (l = 1), horizontal crack (l = 2), and alligator
crack (l = 3). Damage levelsi for each cracking type are also defined as discrete value in a range of [0,3] (i(i = 0, ...,3))
according to its size (small, medium, and large). The condition states of road sections are described as the combinationof
cracking types and their damage levels. As a result of combination, there are 10 condition states. The description of each
condition state is shown in Table 2.

6.2. Transition of condition states

This section explains the transition among condition states defined in Table 2. It is assumed that at timesτA andτB

(refer to Fig. 1), condition states are (i, l) and (j,m), respectively, withz as time interval. The absorbing condition state is
defined as a combination of (i = 3, l = 3), with its transition probabilityπ33,33 = 1.

If at time τA, damage level isi = 2, the transition of condition state can be: 1) no further deterioration till timeτB.
Condition state (2, l) (l = 1,2,3) remains in periodz, with transition probability (π2l,2l); 2) Damage leveli = 2 remains in
durationz. However, there is a change in cracking typel. Transition probability of this event isπ2l,2m (m = l + 1, · · · ,3);
3) Both damage leveli and cracking typel change at timeτB with transition probabilityπ2l,3m (m= 1,2,3).

In case damage level at timeτA is i = 1, transitions can be described as one of the events: 1) no change of either
damage level and cracking type from timeτA to τB. The probability of the event is (π1l,1l); 2) Cracking type changes
at timeτB, with transition probability (π1l,1m (m = l + 1, · · · ,3)); 3) Damage leveli changes one step at timeτB, with
transition probability (π1l,2m (m = 1,2,3)); 4) Damage leveli changes toi = 3 at timeτB, with transition probability
(π1l,3m (m= 1,2,3)).
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Table 3:Model’s parametersβi,l , hazard rateθi,l , and durationRMDi,l of transition.
Condition states Constant term Traffic volume Hazard rate Duration

(i, l) β1i,l β2i,l θi,l RMDi,l

(0,1) -2.705 - 0.067 14.955
(-2.795,-2.623) -

(1,1) -1.878 - 0.153 6.538
(-2.082,-1.697) -

(2,1) -0.572 - 0.564 1.772
(-0.895,-0.278) -

(0,2) -2.299 0.284 0.126 7.944
(-2.417,-2.186) (0.196,0.433)

(1,2) -1.560 0.720 0.373 2.685
(-1.831,-1.360) (0.509,1.037)

(2,2) 0.227 - 1.255 0.797
(0.0886,0.364) -

(0,3) -5.830 - 0.003 -
(-6.233,-5.508) -

(1,3) -1.367 - 0.255 3.925
(-2.242,-0.565) -

(2,3) - - - -
- -

Note) Values in parentheses are lower bound and upper bound values of credible interval corresponding to 95% of its significant level.

Finally, in case condition state at timeτA is (0,0), the transitions among condition states can be: 1) no deterioration
from timeτA toτB. The transition probability of the event is (π00,00); 2) Damage level changes one step, crack appears, with
transition probability (π00,1m (m= 1,2,3)); 3) Damage level changes two steps, crack appears, with transition probability
(π00,2m (m= 1,2,3)); 4) Damage level changes three steps, crack appears, with transition probability (π00,3m (m= 1,2,3)).

6.3. Results

In the study, hazard rateθi,l of each condition state was assumed to be dependent only on traffic volume (Eq. (56)).
This assumption was acceptable as traffic volume is considered as one of the main factors causing deterioration of road
(Tsuda et al., 2006). As a matter of fact, crack initiation could be also related to other factors such as: ambient temperature,
materials, and axes load. However, in our study, those factors can be considered as already incorporated in the constant
term of regression function. The denotation of constant term and traffic volume used in the study arexk

1 = 1 andxk
2,

respectively.
The objective of estimation is to estimate the model’s parametersβi,l , which is often referred as unknown parameters

in statistical models (Eq. (45)). Following equation describes the function form assumed for the hazard rateθi,l .

θk00 =

3
∑

n=1

2
∑

m=1

βm
0nxk

m and θkin =
2
∑

m=1

βm
inxk

m, (56)

(i = 1,2;n = 1,2,3;k = 1, · · · ,2751).

In the program (coded in FORTRAN 90), at each iteration, new valuesβi,l are recorded. To verify its values, likelihood
ratio R(β̂−m) (m = 1, · · · , I ) is examined. Values ofβ will be accepted as convergent values with a certain degree of
significanceR(β̂−m) = 2{lnL(β̂) − lnL(β̂−m)}, whereβ̂−m is a vector, in which,m element ofβ̂m is substituted for̂β with
its mean equals to 0. When|R(β̂−m)| ≥ 3.48 is observed, null hypothesisβm = 0 can be dismissed by a significant level
5%.

Results of estimation using the COHA model with MCMC simulation are shown in Table 3. In the table, values in
parentheses are lower bound and upper bound values of the credible interval with 95% significant level, calculated by
using Eqs. (55-a) and (55-b). Values ofβ1

il in Table 3 infers that other influencing factors to deterioration other than traffic
volume have considerably impacts on the hazard rate of condition state (i, l) = (1,1),(2,1),(2,2), and (1,3). Hazard rate
of condition state (2,3) is not obtained due to a reason that data on damage level 3 isnot available. Estimation results
also highlight a fact that annual traffic volume has a significant impact on the deterioration of horizontal crack, with their
parameter valuesβ2

02 andβ2
12 equal to 0.284 and 0.720, respectively.

The two last right column of Table 3 show the values of hazard rateθi,l calculated based on Eq. (56) and the life
expectancy of condition state (or the duration of being in a condition state) calculated based on Eq. (15). It can be
interpreted from the values of hazard ratesθ that longitudinal crack progresses significantly slower than horizontal crack
and alligator crack. Furthermore, the life expectancy of horizontal cracks becomes relatively short after longitudinal
cracks occurs. The life expectancy of damage level 1 of alligator crack is not counted as a result of insufficient recorded
data. This problem might be due to the past interventions, with objectives to heal only for horizontal and longitudinal
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Table 4: Markov transition probability according to cracking type
Damage levels Cracking types

0 1 2 3
Longitudinal crack

0 0.935 0.060 0.004 0.001
1 0.0 0.858 0.108 0.034
2 0.0 0.0 0.569 0.431
3 0.0 0.0 0.0 1.0

Horizontal crack
0 0.882 0.098 0.013 0.007
1 0.0 0.689 0.170 0.141
2 0.0 0.0 0.285 0.715
3 0.0 0.0 0.0 1.0

Alligator crack
0 0.997 0.003 0.000 0.000
1 0.0 0.775 0.225 0.000
2 0.0 0.0 0.997 0.003
3 0.0 0.0 0.0 1.0

Note) Transition probabilities are in one year term.

Table 5: Competing m.t.p for pairs of condition states.
Condition states (0,0) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(0,0) 0.822 0.053 0.098 0.003 0.004 0.013 0.000 0.001 0.006 0.000
(1,1) 0.0 0.755 0.084 0.002 0.105 0.014 0.000 0.034 0.006 0.000
(1,2) 0.0 0.0 0.678 0.003 0.007 0.170 0.000 0.002 0.140 0.000
(1,3) 0.0 0.0 0.0 0.728 0.007 0.023 0.219 0.003 0.020 0.000
(2,1) 0.0 0.0 0.0 0.0 0.541 0.016 0.001 0.422 0.020 0.000
(2,2) 0.0 0.0 0.0 0.0 0.0 0.284 0.000 0.001 0.715 0.000
(2,3) 0.0 0.0 0.0 0.0 0.0 0.0 0.963 0.004 0.029 0.004
(3,1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.971 0.029 0.000
(3,2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000 0.000
(3,3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Note) Transition probabilities are in one year term.

cracks. Overall, it takes about more than 21 years for a road section in perfect condition state to encounter heavily damage
level of longitudinal crack and about 10 years to be in the last damage level (i = 3) of horizontal crack.

The transition probabilities among damage levels of respective cracking types are presented in Table 4. The properties
of transition probabilities are estimated by means of expected hazard rates, which are calculated on average basis using
the MUSTEM model.

Using the Eqs. (20), (31), and (35), the properties of the competing m.t.p for each pair of condition state (i, l) are
estimated and shown in Table 5. The properties of the competing m.t.p in Table 5 are not purely homogenous Markov
properties. The properties reflect transitions among pairsof condition states in one year term after last interventions. An
interesting finding is that transition probabilities of initial damage levels of either longitudinal crack and horizontal crack
are considerable high, reflecting the true cracking deterioration in the area of targeted road sections.

We present in Fig. 3 deterioration curves of respective cracking types. The horizontal axis indicates elapsed time (in
years). The blue lines demonstrate the change in value of transition probability, in which, damage levels of cracking types
remain in the same states. The two lines in the lower part of the figure are referred to same cracking types. It is observable
that there is a sharp decrease in the values of transition probability concerning damage levels of horizontal crack, while
it is relatively slow with longitudinal crack. This is corresponding to the results in Table 3. Thus, generally, suffice to
say that the overall cracking of road sections is dominated by deterioration of horizontal crack. In addition, correlation
in term of deterioration curves between horizontal crack and longitudinal crack reveals a potential of horizontal cracking
influence over the longitudinal crack. Finally, the pink lines illustrate the change of transition probability among different
cracking types.

Fig. 4-a additionally gives information on the distribution of condition state (i, l) over the time span of 25 years.
Calculation for drawing this figure is based on obtained competing m.t.pPil (y) through Eq. (38). Colored patterns in the
figure have their respective implications to cracking typesand damage levels.

It can be seen from the figure that, within 3.5 years of usage, numbers of road sections in good condition account for
about 50% out of the total numbers. Within the same period, deterioration concerning horizontal crack is more intense
than longitudinal crack, with a percentage of 20 % in term of distribution. Approximately 8 years after the initial time,
numbers of road sections with longitudinal crack are forecasted to reach 50%. The distribution of alligator crack in this
figure is not significant observed. With this observation, werealize that horizontal crack is the dominant cracking type.
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Figure 3: Expected deterioration curves of cracks.

In practice, most of interventions have been carried out to recover the horizontal crack and longitudinal crack before the
occurrence of alligator crack.
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Figure 4: Condition states distribution

6.4. Comparison

Empirical applications on the same sort of cracking data were further carried out with the MUSTEM model and the
HIMA model for the comparison of estimation results. The MUSTEM model was used separately with each cracking
type. Whilst, the HIMA model was used with three cracking types at the same time like in the COHA model. Due to the
differences of the three models, the MUSTEM model and the HIMA model consider only the observed sampling values
of typical cracking type, hidden cracking types are not considered in these two models. Moreover, with the HIMA model,
it is not possible to construct deterioration overall curves since the HIMA model considers only each cracking type and
its damage level.

Distribution of condition states over time using the HIMA model is shown in Fig. 4-b. This figure can be compared
directly with the distribution of condition states distribution using the COHA model (Fig. 4-a). As can be seen from
comparison between the two figures (Fig. 4-a and Fig. 4-b), the differences in the shapes and patterns corresponding to
the damage levels under two models are not noteworthy observed. However, there is a minor noticeable difference with
regard to the probability distribution of horizontal crack(i.e. becomes smaller along with time axis). Reason for the
difference of condition state distribution of horizontal crackis believed due to the overestimation of horizontal cracking
type when using the HIMA model.
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The comparison of estimation results between the MUSTEM model and the COHA model are shown in Fig. 5. In
either cases, there appear a substantial discrepancy. Deterioration speed obtained from the MUSTEM model is sharply
faster than that of the COHA model. These differences are due to the fact that the MUSTEM model uses only representing
sampling data, which are always in worse condition states. This problem is regarded as overestimation of true condition
states. Meanwhile, the COHA model has ability to reveal the hidden condition states of damage levels and cracking types.
Thus, its estimation results are greatly improved.

7. Conclusions

Deterioration of an infrastructure object can be represented by means of several performance indicators. In monitoring
activities, it is often the case that worse value of performance indicator is selected as representative condition state. Values
of other performance indicators could be neglected, and thus remaining as hidden information in the data bank. A typical
example of such a problem is with monitoring data of cracks. Cracks occur on the surface of a road section can be in
multiple directions (e.g. longitudinal crack, horizontalcrack, and alligator crack). In many cases, only crack with worse
value (i.e. percentage of crack on road surface), is chosen to be representative crack. This selection bias could possibly
result in non-optimal decisions on chosing intervention strategy to be executed on road sections in order to provide
adequate level of service.

In order to tackle the problems, we developed a novel Markov hazard model that can be used for deterioration pre-
diction of infrastructure system with more than a single performance indicator and with multiple condition states. The
model was formulated to mitigate the selection bias embedded in monitoring data. Precisely, in the model, it is assumed
that deterioration process can be of multiple types. Each type of deterioration is measured by use of damage levels. The
overall condition state of an infrastructure object is the combination of deterioration type and damage level. In addition, it
is also assumed that condition state is defined based on a competitive selection among damage levels and cracking types,
and therefore, the model’s name is a competitive Markov model.

In the paper, we also presented a novel numerical solution toobtain model’s parameters by using Bayesian estimation
method and Markov Chain Monte Carlo simulation. The model was then tested with a cracking dataset of road sections
in Japan. It was found that horizontal crack is the dominant cracking type. Longitudinal crack progresses slower than
horizontal crack and alligator crack.

Finally, it is concluded that the model is robust and the estimation results are significant. The model can be applied
not only for modelling crack initiation but also for other types of deterioration as well, e.g. the corrosion of rebars due to
both carbonition and chloride attack.
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