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Abstract

Cracks on the surface of civil structures (e.g. pavemeriiges; concrete structures) progress in several formsiomnl
under diferent deterioration mechanisms. In monitoring practites often that cracking type with its worst damage
level is selected as a representative condition stategwatiler cracking types and their damage levels are neglected
records, remaining as hidden information. Therefore, tfaetjite in monitoring has a potential to conceal with a bias
selection process, which possibly result in not optimasrineéntion strategies. In overcoming these problems, opempa
presents a non-homogeneous Markov hazard model, with dorgpgezard rates. Cracking condition states are classified
in three types (longitudinal crack, horizontal crack, altigator crack), with three respective damage levels. Tyreadhic
selection of cracking condition states are undergone a etimgpprocess of cracking types and damage levels. We apply a
numerical solution using Bayesian estimation and Markoai@Monte Carlo method to solve the problem of high-order
integration of complete likelihood function. An empiricgtldy on a data-set of Japanese pavement system is presented
to demonstrate the applicability and contribution of thedeio

Key words: Bayesian estimation, Markov Chain Monte Carlo, Gibbs sargpStatistical deterioration prediction,
Markov chain model, Infrastructure management, Pavenranking processes

1. Introduction

Modeling deterioration of civil infrastructures with gtical approach has been significantly documented in tecen
years. One of the great advantages of applying statistitatidration forecasting models is of its capability todrmmorate
uncertainties. The uncertainty in deterioration procdssuil infrastructure can be reduced by making use of histdr
monitoring data. Among the statistical modeling modelsdaeils with Markov chain have been widely applied both
in researchl(Tsuda etlal., 2006; Robelin and Madanat, 200Ba¥ashi et all, 2012b) and in practice (Thompsonlet al.,
1998; AASHTO/ 2004). In Markov deterioration forecastingdels, the deterioration process of civil infrastructuges
described by the transition probability among discreteditiom states, which are deducted values or composite salue
from performance indicators of civil infrastructures (eRavement service indicator (PSI) is a composite condgtiate,
which is evaluated using performance indicators such akicrg, roughness, etc. (Shahin, 2005).

In Pavement management systems (PMSs), quality of a rofateus generally valuated by its riding quality and the
skid resistance. The riding quality and skid resistanceeftected and quantified by evaluating pavement performance
indicators such as cracking, rutting, and longitudinafifgqFukuhara et al., 1990). Measured values of those italisa
are monitoring data, which are stored in the data bank of h&.monitoring data are used for the evaluation of pavement
condition, deterioration forecasting, and supportingislen makers to select optimal intervention strategiesSEpI If
the monitoring data appears to possess measurement artnes gelection of data, it is likely that accurate detettion
forecasting is flaw, as a results, decision makers would @ndith intervention strategies (ISs), which are not optimal
and considerable amount of benefits incurred to stakeho(day. owner, users, and the public) reduced (Kobayashij et a
2012Db).

The deterioration of pavement is a complex process andftitera single performance indicator would not be possible
to perfectly capture the process (Dore and Zubeck, |2009n&i#) 2010) (e.g. riding quality of pavement is measured
not only by cracking, but also by rutting, and longitudinedfile). Even when considering a single performance indicat
alone, its deterioration mechanism and progress couldiplicated. One of the typical example that shows the complex
deterioration concerning one performance indicator iseehanism and development of cracks.

Cracking is one of the popular deterioration phenomenadPtiiSs, especially in the cold regiohs (Dore and Zubeck,
2009). Cracks appear on the road surface ftedent patterns and directions. Cracks are progressed aiveld in
horizontal direction, longitudinal direction, or the coimdition of the twos. Reasons for crack initiation can be maue
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(e.g. rain water infiltrated directly into pavement struetiand causes the reduction in the cohesion of materials, or
contraction and expansion of materials due to high fluabnatif ambient temperature). If a small crack initiated on a
particular location of the pavement section, the overatderation process of a road section would significantleadted
with a greater speed.

In practices, when percentage of cracks on a pavementse@etioches to a certain alarming level (level at which riding
quality, skid resistance, and greater negative impacttisipated, or the alarming level specified as technicalddathand
requirement for interventions, etc.), interventions (emck sealing and crack filling) should be implemented &vent
cracking from further advancement and also to ensure tligriguality in acceptable standards for users. However, as
earlier mentioned, cracking is a complex one. It progregsesrious directions and possibily withftirent levels of
damages| (Kaito et al., 2007). Mechanism of horizontal drackould be diferent from that of longitudinal cracking.
Moreover, treatments for fierent cracking types are not always the sames. Therefasaniportant to understand the
deterioration process of each crack types. This paper &scas deterioration prediction of cracking, which is a good
representation of complex pavement performance indisatdgth multiple types.

Thanks to the development of high-tech inspection and nmeasent devices for civil infrastructures in the past
decades, especially the application of high definition casyand image processing techniques (Kawashima et al.; 1984
Fukuhara et all, 1990; Mohajeri and Manning, 1991; Wang andds/2011), a small crack, even with 1 mm width, can
be detected (Fukuhara el al., 1990). Basically, crackslassified into three types: horizontal crack (or transveraek),
longitudinal crack, and alligator crack (Rababaah et 8052 Kaito et al., 2007; Nakat and Madanat, Z008). Despde th
fact that there are fierent types of cracks that can be recorded and stored in taddak of the PMS, the use of crack is
often referred and represented to its general name as “omaitiout much attention of the actual type of crack itseff. |
many practical cases, the percentage of crack on a roadséstihe representation of the percentage of a type of crack
at its worst deterioration condition. The representatirack and its corresponding deterioration condition is udied
rectly for deterioration prediction using Markov model witingle dimension of condition states (e.g. a single dinoens
Markov model is formulated using only a vector of conditidates).

There is a problem in practice that selection of represietatack to be used in Markov models is, in many cases,
driven by the bias or default assumption on which crackinmesyand their corresponding levels of deterioration. For
example, during the courses of inspections, engineers sélect the cracking type with its worst deterioration d¢bod
among other cracking types to be the representative of deaitke examined road section. Under this situation, there i
a bias in the selection of crack for use in the Markov detation model with single dimension of condition states. The
practice of selecting the typical cracking type with its stateterioration condition among other cracking types tonty
considered as bias selection process, but also a competitigction process as well. For example, in the first ingpect
time, horizontal crack is selected to be representativekcod the investigated road section. However, in the second
inspection time on the same road section (or other inspectiodiferent road section), longitudinal crack is selected to
be the representative one.

To overcome the limitation of using Markov model with singlenension of condition states, Kaito et al. (2007)
developed a novel hierarchical Markov model (hereaftezrretl as HIMA model) and successfully tested it on a set of
cracking data in Japan. To the best of authors knowledgejtetmodel is the first one in the field addressing the metipl
dimensions of deterioration and multiple condition statéh Markov chain model. The HIMA model was developed as
a novel extension of the multi-stage exponential Markov eddfl USTEM), which was previously developed also by the
same research group (Tsuda etlal., 2006; Lethanh, 2009yéebiet al., 2012a) at Kyoto University. The fundamental
difference between the HIMA model and the MUSTEM model is theiratiisions of deterioration types and condition
states. In the MUSTEM model, only single dimension of cdodistages is used. Whilst, in the HIMA model, the authors
proposed to use three dimensions of crack initiation withtiple discrete condition states.

In the HIMA model, cracks are classified into three types:izwntal crack, longitudinal crack, and alligator crack.
The deterioration of each cracking type is expressed as dariansition probabilities (m.t.p) among its damage level
Based on cracking types and their corresponding damagks J@/enulti-dimension discrete condition states are defined
(Table[1). The authors have successfully conducted an ealgtudy of the model on a set of cracking data of Japanese
national roads to prove the applicability and usefulnesh®imodel. Moreover, the authors concluded that the model is
more dfective under the condition of havingfigient amount of data concerning each cracking type anditeda level.
However, the HIMA model has a default assumption that noctiele bias and measurement errors exist in monitoring
activities concerning the measurement of cracking typeglaeir damage levels.

The present paper proposes a new deterioration forecastidg! in the streamline of Markov deterioration forecast-
ing models for infrastructure asset management. The ms@ahovel extension of the HIMA model, which expresses the
cracking condition states on pavement structural surfacediltiple directions. We discuss the bias in selectingkirar
condition states as a competitive process, which was natemtloped with the HIMA model, and propose a numerical
solution using Bayesian estimation and Markov Chain Moradd(MCMC) simulation. To test our model, we apply an
empirical study on a set of cracking data of national roatesgsn Japan.

Following section gives a brief review of the HIMA model, whidiscussed cracking process and selection bias in
monitoring and management practices in the PMS. SelctiomBreuies important formulation of the MUSTEM model,
which is considered as the core of the HIMA model and the megdanodel in this paper. Sectioh 4 includes the math-



Table 1: Condition states concerning the cracking modes.

Damage levels Cracking typesl
Longitudinal crack  Horizontal crack  Alligator crack
i=0 (0,0)
i=1 () (12 (13)
i=2 21 (22) (23)
i=3 (3 (32) (33)

ematical formulation of the new model. Numerical solutienestimation method for the proposed model is detailed in
Sectior[b. Sectiohl6 includes an empirical example. Theskstion concludes the paper and gives recommendation for
practical use of the model and future study.

2. Cracking Process and Selection Bias

2.1. Cracking and deterioration condition states

Cracks appears due to the combination of various aspectharefore being considered as a complex process. There
always exists a certain level of uncertainty in forecastirarking condition states. In view of management, ambyguit
capturing the true cracking types and the damage levelsldeat to non optimal intervention strategies. For example,
cracks are observed in longitudinal direction, horizodiadction, and in alligator crack. Depending on crackingety
and actual damage levels, interventions activities are tesignated. However, interventions are arranged onaegul
basis, and thus interventions cannot be spontaneousliedmgilright time and right place to heal all cracking types. |
addition, an interventions activity, designated for megdnorizontal cracks, do not genuinely heal longitudinalc&s.

As a result, expected values of longitudinal cracks coulddzgected. Thus, it is true to state that using a single angck
type for making decision is not an optimal choice.

In the paper of Kaito et all (2007), the authors developedHiA model to address the multiple progression of
cracking. In the cited paper, cracking process of road satifadescribed by means of condition states with two vee&gbl
damage level and cracking typé& Cracking type is expressed by variablé= 0, - - -, L), with | = 0 indicating no sign of
crack. Cracking typé(l = 1,---,L) can be of longitudinal crack, horizontal crack, and atilgacrack. Damage level is
defined as state variahléi = 0,1, -- -, 1), representing deterioration level of respective cragkype. Damage levél= 0
when there is no sign of deterioration and damage levekeferred as “absorbing state”, which demands an immediat
intervention. Under this assumption, overall deteriamratyf crack can be relatively described by a pair of stateatdas,
which is defined as “pair condition statd} ). Condition state (M) and (, L) respectively refer to no sign of crack and
“absorbing condition state” of a road section. Descriptdrracking types and damage levels are given in Table 1.

2.2. Selection bias and representation matter

In many PMSs, an entire road length is often divided into snalections ¢,k = 1,---, K) or divisions for con-
veniences of monitoring and management (fFig. 1). Withinaalreection, cracks might occur in several tydéswith
different damage levels)( In practice, inspectors often decide to use the worst danf@vel, corresponding to a spe-
cific cracking type, to be the representative conditionestétowever, there is no guarantee which condition stateeis th
worst. This practice exposes as a shortcoming that truenvetion of other cracking types is omitted, remaining as
hidden information. For example, as shown in Table 1, thgm@ss of crack on a road section is described by 3 condition
states: longitudinal crack (2), horizontal crack (2), and alligator crack (B)). It is not certain at a point in time to
verify which condition state is the best representative ragriiese three. However, it is often the case that inspectors
select condition state (2) (horizontal crack) to be the representative value foedetation of cracks of that road section.
Given that reality, true information of other cracking tgéongitudinal crack (21) and alligator crack (B)) is neglected
and not recorded in the database. This problem could resalbm-optimal estimation results of deterioration and also
influence the true likelihood of the OISs.

The process to select representative condition states @isomed is viewed as a bias selection process. The selection
bias is a type of systematic measurement errors, which daaswvable by using conventional errors elimination tech-
nigues (Kobayashi et al., 2012b). The bias selection psoicethe practice of inspections therefore targets only a&&fp
cracking type and its damage level. However, in our paperisuelop a model to capture the cracking progress of not
only typical crack but also other cracking types. The migsirfiormation of cracking types, which were not selected and
recorded, and their corresponding damage levels, is asigttetn the paper, condition states concerning missingicrg.c
types and their damage levels are regarded as “latent” dd&m” variables.

The selection bias in defining a representative cracking ogm be interpreted from Figl 1. As shown in the figure, a
road section can be divided into smaller rectangular asigaqs;, - - -, Sx). Measurement of cracks at any inspection time,
in general, is carried out on each rectangular age@he results of dferent cracking types and their damage level are then
weighted (or aggregated) to become the means, which reptrimseoverall cracking condition states of the road section
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Figure 1: Measured areas in a road section and the valuédistn of cracking types
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Figure 2: Deterioration process

We denote the mean values of damage levels of longitudinakand horizontal crack asandg, respectively. The value
distributions of longitudinal crack and horizontal crackand their means can be interpreted also from the figure. The
solid distribution curve represents the value distributid longitudinal crack, and the two dotted lines represete
distribution of horizontal crack at a inspection time. Doaihcertainty, at any inspection time, the means of ditiobu
of horizontal craclg, can be either greater or smaller than the mean of longitlidirackea.

The selection of damage level and typical cracking typessiaed as follows:

e at any inspection time, if damage level of horizontal craallofvs the pattern of solid distribution curve, which has
mean value of, thena is selected as the representative damage level.

e On the other hand, if damage level of horizontal crack pregge as like in the dotted distribution curve, which has
mean value oB, theng is selected as the representative damage level.

As a matter of fact, the development of horizontal crack amgjitudinal crack varies fferently. Hence, the mean value
of horizontal crack (dotted distribution curves) is fluded either with value o8 or g’. This type of selecting the
representation of damage level is considered as a comp@ticgss among damage levels and types of cracking.

In order to address the competitive crack selection prodessimportant to develop a new methodology that takes
into account the selection bias. The new methodology shoeilable to estimate damage levels of hidden cracking types,
especially under the situations of having only partial @oimplete monitoring data, which is quite popular in many BMS

3. The MUSTEM model

In this section, we summary the researcnh of Tsudalet al. [28@bayashi et al. (2012a), which proposes a modeling
approach to estimate the Markov transition probabilityt{oy.based on historical monitoring data. Careful readegs a
recommended to refer to the original paper for greater detbthe methodology.

It is assumed that the deterioration of a road section fdltve path shown in Fi@] 2. In the figure, timeepresents
the actual time on a calendar (hereafter referred as “timi8}jerioration of a road section can be represented byadéscr
condition state(i = 1, .., J), withi = 1 as initial condition state (when structure is new) ardJ as absorbing condition



state. Timerp andrg are inspection times, while timeis any arbitrary time in between. Duration between two ictipa
times isZ. Given monitoring data of two inspection timegandrg, the m.t.p is described as follows:

Probh(re) = j | h(ra) =i = p @)

Suppose that condition state changes fidmi + 1 at timer; (timing yc). At that time, the duration of condition state
i can be expressed by the following equatidn= 7 — 7i_1 = Yc. Assume that the duratiaf of condition staté is a
random variable, and is subjected to the probability dgraitction fi(;) and the distribution functiof;(s;). Here, the
domain of the duratiog is [0, ). The following expression is defined from the definition @ftdbution function:

Vi
Fi(y) = fo (G)dg @

The distribution functiorF;(y;) represents the cumulative probability of the change oftcthradition state fromtoi + 1

in the period from the initial timing; = O (timeti_1), at which the condition state has becomo the timingy; (time
7i_1 + ;). Accordingly, the probabilityFi(y;) of remaining at condition staierom the initial timingy; = 0 to the sample
timing y; € [0, o) can be expressed by the following equation, using the catinel probability of the change of the
condition state fromitoi + 1 until timingy;:

Probg > vi} = Fi(yi) = 1 - Fi(y) 3)

The conditional probability of the event that the road settiemains in condition staieuntil timing y; and change to
condition state + 1 in the period ¥, y; + Ay;) is defined as:

_ fitmAy

Fi(yi)
The instantaneous ratg(y;) of the change in the condition state frono i + 1 at timingy; is called a hazard function. By
using a hazard function suited for the assumed deteriorptiocess, it is possible to describe the evolution of detation
over time.

Under the assumption that the Markov characteristics qoimug the deterioration processes of the road section do
not depend on the history of deterioration and the hazarctifumis constang; > 0, in another words, the hazard function
is independent of the timing, following equation is defined:

Ai(y) = 6 )

Using the hazard functiofy(y;) = 6;, the probability of the even that condition statemains over a duratioy is further
described as:

Ai(Yi)Ay; 4)

. Vi
Fi(yi) = exp[— ﬁ ﬂi(U)dU] = exp(-6iyi) (6)

The survival probability function is identical to the traign probability p; when the duratiory; equals to intervat. By
defining the subsequent conditional probability of comuditstatej to i, with respect te, a general mathematical formula
for estimating the m.t.jm;; is formulated:

k1 j-1
: . Om Om
pij(2) = Probp(rs) = jlh(ra) = i] = exp(-biz) )
glamalla=a

where there are the following conditions:

m=i Om—6i

Mt _ =1 at(k>])

M=K Omi1—0k

8)

{n“ bo_ -1 at (k<i+1)

In addition, with regard to the m.t.p from any condition st absorbing condition staf®;, following equation is used:

J-1
Pu@=1-> pi@(=1--.3-1) ©)
j=i

4. Formulation of the competing Markov hazard (COHA) model

4.1. Competing Markov transition probabilities

Cracks could appear on the surface of a road section aftep#ttesection is newly paved or intervened. In order to
uphold a certain service level and maintain riding qualBg need to be evaluated for future management. It is assumed



that immediately after an intervention, surface conditbthe road section is renewed, with condition staB & (0O, 0).

To visualize the deterioration of cracks, we definewith y = 0, as starting point immediately after an intervention.
Initial condition state is updated as () at timerg. In next inspection time, also the time of next interveniiiérequired),
passing duration is assumedzsvith y + z as time indication of when measurement being counted. Thertainty of
deterioration progress with respect to cracking is deedritly means of transition probability among condition stéte
that period.

Condition states of a road surface in duratyda defined as state varialiééy) = (i,1) (i =0,---,1;1 =0,---,L). After
any arbitrary time duratiogy + z, state variable becomégy +2) = (jm) (j = 0,---,I;m=0,---,L). Thus, following
transition probability is defined:

. . Probh(y + 2) = (j,m), h(y) = (i. )]
Probh(y + 2) = (j, m)ih(y) = (i,1)] = Probh(y) = (1] = 7tit im(Y, 2)- (10)

The m.t.p7i jm(y, 2) is estimated based on the condition states of road sectidnish are recorded as a result of the
competitive selection among damage levels and crackingstyd herefore, we refer the m.tz jm(y, 2) as competing
m.t.p. It is noted that the m.t.p of the MUSTEM model dependdransition duratiorz and timey. However, the
competing m.t.p of the COHA is defined based only on the in&diom of typical cracking type and damage level. It
should be also noted that the competing m.t.p might notfgatie condition of homogeneous m.t.p with respect to
hidden cracking type as earlier mentioned in sediion 2. @rilfformation of all condition states is available, had the
following competing m.t.p assured.

moo(y,2) -+ 7oY. D
ny.a=| : .| (11)
0 ey, 2)
WhereQ is a block procession, ang(y, 2) (i, j = 0, - - -, I) satisfies following conditions:

7oo(Y: 2) = moo00(Ys 2),

70i(¥.2) = ( mo0ju(y,2 -+ moojL(y:2) ),
mirjn(:2 o minj(y.2

mij(y.2 = : : : (12)
rLjp(.2 o mec(ys2)

Eqg. (11) shows the competing m.t.p between two consecutseiction time$ = y andt + 1 = y + z. Probabilistically,
properties of the competing m.t.p vary upoffelient inspection period. If an intervention has not beetieghcracking
happens in natural process. Hence, conditipfn(y,2) = 0 (i > j) must be satisfied. Moreover, summation of all
properties in a row of transition probability matrix mustdegual to 1 aSj'j:i Z,Lmo 7il,jim(y, 2) = 1. Following conditions
are obligated as rules of the competing m.t.p, withim(y, 2) = 1 for absorbing state of damage level

i im(y,2) =2 0
7ri|,,-m(y, Z) =0 (I > ])
le:i S0 jm(¥.2) = 1

The competing m.t.p describes the transition among camdgfates of cracks based on the selection of typical crgckin
type and damage level. The selection and estimation of ctingpm.t.p for each road section is mutually independent
from other sections.

In order to obtain the explicit mathematical formula for ttmnpeting m.t.p, we extend the formula in Hg. (7) for the
case of cracking. We assurttefrom the rangd (I = 1,---,L) as an example of cracking type. Transition concerning
damage levellis described as (0) — (1,1*) — --- — (I,1*). Hazard rat#;- is defined as transition from condition state
@i,I*) to (i + 1,1"). For transition from initial condition state (0) to (1, 1*), hazard rate is expressed@s. Remaining
duration in condition state,(*) (i = O, - - -, | — 1), hereafter referred as “life expectancy” of conditicaistf, ), is defined
by means of a stochastic varialglg, with its probability density functiorf;.(-) and distribution functior;- (). In
the period {;t + 1), the probability density that condition statel() disappears at the end of the period is expressed by
hazard functiom;- (z-), with elapsed time;-. As a result, the competing m.t.p is defined as:

(13)

P} (2) = Problh(re) = (i.1")Ih(ra) = (i.1")] = exp(-6;-2). (14-a)
j k-1 j-1

* _ IR R\ 9ml* Gml* a _

%@-WWW“‘W”W”*“”—élhw4memm4mwm%@ (14-b)



Eq. (14-b) satisfies following conditions:

ki -1 (k<i+l)
kT =1 k=)

M=K O(m1y+ —bk*

Using hazard raté,-, we defineRMD as an important management indical®MD; |- stands for Expected Remaining
Duration of damage of cracking typd*). The indicator reflects the duration, in which damage léwgeirvives, given a
condition that it has been observed in previous inspectina.tFormula oRMD, - is actually analogous to the formula
of survival functionE;- in infinite domain (Lancastelr, 1990):

RMDy. = f " Ei @ )dz= 6 (15)
0

Expected life expectancy (denotedis;-) of damage leve| (> 1), if considering all damage level§ < j) of cracking
typel*, is thus a summation of all transition duration from evergndge level.

j
ETj = > 6% (16)
i=1

4.2. The COHA model.

In previous sectionl* is an example of cracking type. In this section, we considlecracking types in the range
n(n=1,---,L). The cracking process of an individual cracking type i®jmehdent from other cracking types. Selection
method for representative condition state follows twosulEhe first rule applies to select the worst damage level gmon
cracking types. The second rule applies when road sectjposes with identical damage level for all cracking types and
cracking type with higher index value is selected. Rulessmidk condition state,() can be expressible as:

i=maxXin(n=1,---,L)}
{I:max{n|in=i(n=1,~-~,L)}' 17)

Eq. [(I7) expresses recorded data, which is considered aslagbias selection process. In addition, we dempfe # 1)
as damage level of hidden cracking type

in<i (n=1,---,1-1)
{in<i (n=1+1,---,L) (18)

Hazard ratedyo, which infers the change of damage levétom 0 to 1, is defined in the whole range of cracking type
@nn=1,---,L):

L
Boo = Z Gon- (19)
n=1

Condition state variables at tinte= 75 andt = 7g areh(ra) = (i,1) andh(rg) = (j, m) respectively. The transition of
condition states fromi(l) to (j, m) in durationz = 75 — 74 is expressed as the m.t.p in following subsections:

4.2.1. wheni j=0
In the case that condition state change fron®fQo (1L n) (n=1,---, L), hazard rate is defined in Eq.{19). The m.t.p
moooo(Y, 2) over duratiore is then defined:

L
mooo0(Ys 2 = exp[— Z Qo,nz]. (20)
n=1
The competing m.t.poooo(Y, 2 does not depend on tintebut on duratiorz.

4.2.2. when j0and |#m
The competing m.t.p is defined similarly as in Hg.](10).

Probhy +2) = (. m). hy) = (i.)] 1)
Probh(y) = (i, 1)] '
Formulation of the nominator in Eq._(21) can be describedhind diferent scenarios as: 1) cracking typebserved at

time 74, is not selected as representative one at tig)€) cracking typam, observed at timeg, is not appeared at time
7a; 3) both scenarios 1 and 2 occurs simultaneously.

it jm(Y, 2 =



In scenario 1, at timea, the probability of damage levelvith cracking typd is p{)i (y). To satisfy the assumption that
at timerg, damage levej, is not chosen, following condition must be satisfied:

!s!|s! when I<m. (22)
i<ji<j when I>m
Under this assumption, probability for scenario 1 to hagpetefined as:
ii
P1(y.2) = P5¥) ), PL(D. (23)
=i

Probability p!t(z) is considered in the entire range of damage levels fréort in durationz, with its detailed properties
presented in Eqsl_(14-a) aiid (14-b). Tliéxang character), has following meaning:

v ] | <m
Jl—{j_l l>m " (24)

In scenario 2, at timea, following condition must be satisfied to hold the assumptio# |, meaning that cracking type
mis not chosen at timea.

{ im<i when I>m. 25)
im<1i when I<m
Thus, the simultaneous occurrence probability for cragkypemin damage leve| at timerg is formulated as:
im
P2(,2) = ) PRY)PY(2- (26)
s=0
In scenario 3, the damage level of cracking typghould satisfy
!ns! whenl>n’ and j_ns! when m>n, @7)
in<i when I<n jn<] when m<n

and following occurrence probability for scenario 3 is otéal:

L i n
P, = [| DD eb0)pk@. (28)

n=1#l,#m s=0 t=s

Product signTn-1...+m in Eq. (28) concerns cracking typeother than cracking typdsandm. Therefore, the nominator
of Eq. (21) is further expressed as

L |~ Tn TI Tm
Probm<y+z)=(j,m),h(y)=(i,l)1={ [ ZZp&(y)p&(z)}{p&(y)Z p!t(z)}{Z p&(y)p;'}(z)}. (29)
t=i s=0

n=L#l,#m s=0 t=s

The denominator of EqL{21) concerns only the probabilityafdition statei(l) at timera. If transition from initial time
is considered, following probability is defined:

L in
Probh(y) = (.01 = P | | D Pbs)- (30)

n=1,#l s=0

Finally, the explicit form of competing m.ts im(y, 2) is obtained:

L

iy n i i L -
i, im(¥ 2) = { [T 2.0 pss(y)pzt(z)}{z p!t(z)}{z poms(y)pg}(z)}{ﬂ Zpss(y)} : (31)
n=1#l,#m s=0 t=s t=i s=0 n=1,#l s=0

It is noted that the competing m.t.p depends not onlyg baot alsoy. As earlier mentioned in sectigh 3, the m.t.p of the
MUSTEM model depends only an(Eq. (7)).

4.2.3. when 0, | =m

This assumption occurs under two scenarios: 1) crackingltigin damage levelsand j respectively at time and
Tg; 2) at timera, damage level of cracking typds i. However, in timerg, damage levej is observed simultaneously
for cracking typed andm. To differentiate the description with the scenarios in previogtia® the sign is used in
following paragraphs.



In scenario 1, we apply Eqgs.[{14}a) anf (13-b) for the probability of ciagktypel, with its damage levelandj at
time ra andrg respectively.

P1(Y.2) = po; ()P (2. (32)
In scenario 2 conditions in Eqs[{22) anf (R5) must be satisfied, and thegprobability of scenario’2s defined:
L T i
P2v.2 = [ | D)D) pb0pi@. (33)
n=1#l s=0 t=s
Probability Probii(y) = (i, 1)], which happens at timex = y is also defined as
L o
Probh(y) = (,1] = p,;») [ | D post). (34)
n=1,#l s=0

To this point, an explicit mathematical form for competing.mis specified:

L i in L -1
(v, ) = {1_[ ) p&(y)pzt(z)} p!,»(z){ [1> p&(y)} : (35)

n=1#l s=0 t=s n=1#| s=0

the competing m.t.m jm(Y, 2) is expressible through the m.tqh 2.

To this point, it is our target to estimate thedel’s parameters, which are embedded in the likelihoadtfan of the
m.t.p in Eq. [3b), based on inspection data. One way to eitha model’s parameters is using the maximum likelihood
estimation (MLE) method. However, It is likely impossibteuse the MLE method as the likelihood function involves a
high-order of integration, which limits the derivation fitre Jacobian matrix (first order derivative) and Hessiarrimat
(second order derivative). To overcome this problem, inieef, we propose a methodology using frontier stochastic
approach with Bayesian estimation and MCMC simulation.

4.3. Prediction of non-homogeneous Markov distribution.

The competing m.t.p has Markov property in its form. Howetke competing m.t.p is not purely homogeneous
Markov process. In fact, it is regarded as non-homogeneoaikd process. To describe this fact, we express the
competing m.t.p in three respective initial timgs yg, andyc, with durationsra, 7g, andrc respectively. Time interval
is denoted ag. If competing m.t.p satisfies homogenous Markov procedisyiing equation can be derived:

Probh(yc) = (i, m)ih(ya) = (i, )]
L i
= | ] D Probh(yc) = (i, mih(ys) = (i )] - Probh(ys) = (i n)i(ya) = (i, ] (36)
n=1#l s=0

On the other hand, if considering two time intervaisir2 Markov process, following equation cannot be derivedtifer
case of two time intervals2In Egs. [31) and(35), there is an evidence that competing ulepends not onlgbut also
ony.

L
7Tt jm(Ya, 22) = Z Z it kn(YA> D7kn jm(YBs 2)- (37)

k=1 n=1

For any arbitrary time interval, another explicit mathematical form should be developdthawith Egs. [(31) and (35).

We define probabilityP; (y) for the event “condition state,{) (i = 0,---,1;1 =0,---, L) occurs at a certain time with
elapsed timg’".
i
Pi(y) = {H >, Pgin(Y)} Poi (¥). (38)
n#l i,=0

In addition, the probability that damage levedf any cracking type occurs in elapsed timafter any intervention is
defined as maximum damage level probabiftyy).

L
PIY) = D Pily). (39)
=1



Life expectancyeT(j) of damage leve] after any intervention is formulated as:
00 j_l
ET() = [ v Py (40)
i=0

5. Estimation Method

5.1. MCMC Method.

In statistic with Bayesian inference, prior and posterimhability are employed with aim to estimate the values
of model's parameters. However, in actual analysis, it islita define a prior probability distribution, even with a
simple condition state hazard model (Ibrahim etlal., 200¥ethods to overcome the problems in the assumption of
prior probability distribution often require numericalaysis with multi-dimensional integration, and thus renirg as
a limitation in Bayesian estimation.

In recent years, an appealing solution to the problems ireBiay estimation has been proposed, with the application
of MCMC simulation. The MCMC simulation technique does resjuire a high level of derivative and multi-dimensional
integration of model’s objective functions (Robert, 11998k a result, estimation results, in a great number of agplie
statistic research, have been improved through the conxinaf Bayesian estimation and MCMC simulation.

In MCMC simulation, Gibbs sampling and Metropolis Hastirflyketropolis-Hastings or MH) techniques have been
extensively discussed (Robert, 1996). Reference to reisearimage restoration is a good example of MCMC simulation
(Geman and Gemaln, 1984). Of that study, the algorithm of &délalmpling was used to estimate the posterior distribution
in Bayesian estimation. In MH law, the iterative paramgtey defined by repeatedly generating random numbers through
the conditional probability density function.

Regarding application of Bayesian estimation and MCMC metin infrastructure management, the authors of this
paper has developed a hidden Markov model for eliminatiosedéction bias Kobayashi etial. (2012b). The use of
Bayesian estimation and MCMC method has showed a great tadyp@aver the conventional MLE approach in the case
of having complete likelihood function with multiple integions. Following sections detail our numerical solutton
overcome the challanges in estimation of the COHA modelampaters.

5.2. Formulation

Two visual inspections are conducted for each sedtiohthe entire road system (witK is the total number of road
sections). Condition states being observed at two ingpediine 7§ = y and7X = y* + Z areh(y¥) andh(y* + Z)
respectively. Duratiorz® is time interval between two inspections times. Based onahatbserved condition states, a
dummy variableii‘},jm is assumed, with following characteristics:

& _{ 1 h(y9)=(.1) and h(y* +2) = (j,m) (41)

0 otherwise

To further describe the information of samfga characteristic vectax® = (X, --, x',j,l), representing characteristic
variables influencing on cracking progress is also defineat. iffstance, characteristic variab (m = 1,---, M) is
referred as a characteristic variable with its numberimgikm. Overall information on sampliecan be summarized in

vectoré® = (6%, y&, Z, x¥), with 6% = Sk | im IS @ vector of dummy variable. We pay attention to damage ieved cracking

typel. The formulation of hazard ra@ of samplek, with its characteristic variable® = (X, - - -, x¥,), is then defined as:

0 = expX'B;), (42)
with B, = ”,-- ) |s the line vector of unknown parametgd® (m = 1,---,M). The signr indicates the vector
transposition. The m t. pIl of cracking typd is expressible as afunctlonzi‘f xK andﬁ.. asp”(zk X< : ;). As mentioned
in previous section, competing m.trp jm comprises of two componengs (<, x* : 8;) andpfj(Z,x*: ;) (n #1). Thus,
it can also be described ag jm(y*, 2, X : B), with 8 = (Boy, - - *» B>+ » Bi_10)-

5.3. Complete Likelihood Function

In the COHA model, competing m.tfa jm is defined by means of condition states of both observedaypiacking
type and hidden cracking type. Hence the smultaneousrm:rme probability (likelihood)L(B : &) at the time of
observing the sampling mformatlcgh— (.f ) in entireK road sections can be defined as

1-1 L

w:a-T]] ﬁﬁmum(?kik By

i=0 =0 j=i m=0 k=1
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-1 L | K L thm L L T n il,jm
=nnnnln{n zp%m} } {n { I pgmpztak)}
i=0 1=0 j=i k=1 |m=0 1,#l s=0 m=0,#l | n=1,#l,#m s=0 t=s
i giij m g.um L T in il ji
{Z i ( 2“)} {Z pg“s(yk)p;"j(z")} H [12>.2] poS(Vk)pzt@k)} (ol @), (43)
t=i n=1#l s=0 t=

wherep};(Z) = p};(Z. X" : 8;). Estimating a set of unknown parametgre maximize the likelihood of functiof (#3) is
our objective.

In fregenties statistics, the model's parameters are @&timated by employing regression methods. The method of
Maximum Likelhihood Estimation (MLE) is among the most ptgrwsed in frequentist statistics. However, the MLE
method has its limitation when the objective function (&elihood function) of a statistical model is in the form ofjht
order dimension and multiple integrations_(Andrew et/aD0&,; | Dani and Hedibert, 2006; flg2006). This limitation
appears to be true with the COHA model since the likelihoattfion of the model is of high dimensions. In order to
overcome the limitation of the MLE method, Bayesian statistrecommended (Geman and Geman, 1984; Capper et al.,
2005; Gamerman and Lopes, 2006; Kobayashilet al., 2012a,b).

In Bayesian estimation, Robelt (1996) recommended to usglete likelihood function instead of conventional
likelihood function. To come up with the complete likelitibéunction in our model, we assume a latent variad§l¢éo
represent the damage level of cracking typerhich occurs at time'j\. In another words, the damage level of road section
k, with respect to cracking tydeis s = (s, -+, s, - -, &) at time7X. Damage level has its potential range of values as
follows:

{Ogéﬁsi when n< | (44)

0<s<i when n>1"

Supposing that latent variable vecwe (s!, - -, s€) is measurable, the likelihood function in Ed._43) can beher
defined:

-1 L 1 K Hm|
zera-[1111[1 [n{nw} |
i=0 1=0 j=i k=1 |m=0 \n=12
L L In ‘suLJm || im L ’n Tn 5||.J| )
[ [ [ {Z p;t(?)} {Z p.t(zk)} {pgm(zk) ] {1‘[ p;t(zv} {p”@“)} . (45)
m=0,l | n=1#l,#m | t=sk n=1#l &=0 t=5

Eq. (48) is referred as the complete likelihood function myBsian statistic. The complete likelihood function corga
a latent variables. However, by assuming the posterior distributionsghrough its prior distribution, it is possible to
generate the value af Following equation describes the posterior distributids.

-Z:(Sjri =S §En’ﬁ : f_) _ pgs()_,k’ XK : Bos)

Probis} = 85,6 1 B) = ——— —=— :
Zlglj:o £(§§ =5 slin’ﬂ : f) Zlglj:o pgs()_’k, XK :ﬁOS)

(46)

5.4. Metropolis Hastings Algorithm.

In this study, we apply Metropolis Hastings (MH) algorithiMétropolis et al.| 1953; Hastings, 1970) to generate
the sample of unknown parameij@r In the algorithm, a conjugate distribution to be used aspttier distribution of
target parameter needs to be defined. Sampled valygsuaf then generated using random walk process. In our study,
multi-dimensional normal distribution with mean 0 is usedfze conjugate distribution.

ﬂirln(t) _ Birln(t—l) N(O ( O’ ) (47)

In Eq. [41),tis frequency of sample and standard deviati@ﬁf)f can be of any arbitrary set. The steps on generating
values off using MH method with random walk process are briefly desdribdollowing steps:

Step 1 - Setting up initial value.

Value of standard deviation' in the conjugate distribution (Eq_{47)) is an arbitrary. SEte initial value ofs® =
(s19), ..., sK0) is selected under the condition in EG.44). The initiabreabf8 is also an arbitrary set. Through the
generation of the MH algorithm, the influence of initial veduon estimation results will gradually weaken. In our study
sampling frequencyis equal to 1.
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Step 2 - Sampling latent variabg&.
By applying Eq. [4b), we can calculate new valuesf) through using the obtained vals&t2 and g in step
B4. The m.t.pp}j (¥¥) is also estimated in this step.

Step 3 - Sampling unknown paramegét.

The sample for unknown parameter is generated through titona walk process in the MH algorithm. To begin
with, an dfixing character of each element of parameter vegfo? = 1’“‘1), ,BI'V'_’fL‘ 1)) is redefined and rewritten as
BEY = B4 ... g4 1) Following procedures explain the sampling process:

Step 3.1:5kY and,B(t D are assumed to be available from previous steps.

Step 3.2: To increase the loop iteration (frequen@nd to define sub-domain of damage leyel
B = (ﬁtl’q’ ... ,ﬁﬁq,ﬁfﬂf, ... ,’ng‘l)’. (48)

In addition, step-width vectq?q ©,---,0, g—‘g, 0,---,0), with element in its value ofg'a, is defined. The approval of
expected (on average) step-width in random walk proceksafslnormal distribution with mean 0.

&~ N(O.(c9)?). (49)
As aresult, the standard deviation can be estimated:
£ gLA) £
a,(t»q) = min M’
L(s0, 49, £)

with (£) as the completed likelihood function.
Step 3.3: Random numbar ~ U(0, 1) is generated throught uniform distributi@f(0, 1) in [0, 1]. Unknown parameter
B9 is decided according to the following rules:

(50)

) 4 gt (t.a)
(t.a) _ ﬂ + g if usa 1
B { gL otherwise 1)

The above-mentioned procedure is applied wiftomq=1toq = L.

Step 4-Updating Parameter

Updated valugg® is recorded at any iteration and compared for acceptancejection. Ift < t ast = t + 1, the
program returns to Step 2. Otherwise, the algorithm stops.

It is likely that initial values of parameters remains omthe early stages of iteration process. Whercreases in a
high number, reaching a certain numbense can define our preferable valug8#t (t = t+1,t+2, - - -, ) as the outcome.

5.5. Statistical Inference on Posterior Distribution.

Statistical test for parametg can be carried out based on the generated samples throughGREC simulation.
However, in the simulation, probability density functiafB|£) cannot be considered as an analytical function. Thergfore
instead of using full parametric approach for statistiesit,t non-parametric approach is recommended Rabert!(1996)
According to MH method, among generated sam@i@s(t = 1,---, ), the firstt samples are removed. A new set of
samples is then defined as a replacement, with its subseriptit = {t + 1,---,t). By applying this approach, the joint
probability distribution functior(B) is defined:

#{,3<0<,3te/\4
t-t

G = (52)
where #80 < .t € M} is regarded as the total number of samples, from which lbgixaressiong® < gt € Mis
satisfied. Moreover, expected values{¢B) and standard covarianéZ) of the posterior distribution g8 are defined
respectively as:

) i 3 g Logo

XB) = Epr). . LB} = (Hﬂ SR Sk (53-2)
FB) - GBiB)

£P) =| : S : (53-b)

F(Bap) - TABa)

12



Table 2: Cracking Condition States.

Condition states Description

0,0 (0) New condition states

1,1 (1) longitudinal crack  Small crack
21 (2 Medium crack
31 (3) Large crack
12 (4) Horizontal crack Small crack
22 (5 Medium crack
32 (6) Large crack
1,3 (7) Alligator crack Small crack
23 (8) Medium crack
33 (9 Large crack

Note) Figures in the parentheses shows measured conditas stf cracks.

where
i (t)
Z {(ﬁ' (54-a)
t=t+1
i {ﬂ“’ N aﬁ)
F(BiB;) = Z 1 (54-b)

The credible interval of parametgris examined and determined by using generated samplestmp&e the 100(%
2¢)% credible interval of parametgris defined by using statistical sampling orﬂe,r,b’] (j=1,---,9) W|thﬁ£ <Bj< ,BJ

#BY <. te M)
B° = arg max <&y, (55-a)
- B; t-t
e (HBY = By te My
pj = arg rglm T 1 <egp. (55-b)
j -l

6. Empirical Study

6.1. Data and definition of condition states

We conducted an empirical application of the HIMA model gsirrepresentative set of cracking data of road sections
in Japan. Data was recorded during the period from 1992 td 20@ consisted of three consecutive inspection data
on same road sections. Total numbers of investigated sarapte2751, with each sample representing for an average
sectional length of 100 meters. Beside the percentage vaiieracks measured in three inspection times, values of
variables such as ffizc volume, ambient temperature, thickness of road secti@ns also recorded.

In the study, cracks are classified into three typeddngitudinal crack (= 1), horizontal crackl(= 2), and alligator
crack { = 3). Damage levelsfor each cracking type are also defined as discrete valueangerof [03] (i(i = O, ..., 3))
according to its size (small, medium, and large). The camtitates of road sections are described as the combiradtion
cracking types and their damage levels. As a result of coatioin, there are 10 condition states. The description df eac
condition state is shown in Tallé 2.

6.2. Transition of condition states

This section explains the transition among condition staefined in Tablgl2. It is assumed that at timgandrg
(refer to Fig[1), condition states arielj and (j, m), respectively, witlz as time interval. The absorbing condition state is
defined as a combination df£ 3,1 = 3), with its transition probabilityrzzss = 1.

If at time 74, damage level i$ = 2, the transition of condition state can be: 1) no furtheedetation till timerg.
Condition state (4) (I = 1, 2, 3) remains in period, with transition probability £2 2); 2) Damage level = 2 remains in
durationz. However, there is a change in cracking typd@ransition probability of this event iy om (M=1+1,---,3);
3) Both damage levéland cracking typé change at timeg with transition probabilityry sm (m= 1,2, 3).

In case damage level at timg isi = 1, transitions can be described as one of the events: 1) myeha either
damage level and cracking type from timg to 7. The probability of the event ist(; 1)); 2) Cracking type changes
at time g, with transition probability £ 1m» (m = | + 1,---,3)); 3) Damage level changes one step at timg, with
transition probability £1om (M = 1, 2, 3)); 4) Damage level changes ta = 3 at timerg, with transition probability
(7T1I,3m (m =12, 3))
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Table 3:Model's parameters; |, hazard rat@; |, and duratiorRMD; | of transition.

Condition states| Constant term | Traffic volume | Hazard rate| Duration
()] Bl B2 61 RMD;
0,1) -2.705 - 0.067 14.955
(-2.795,-2.623)

1,2) -1.878 0.153 6.538
(-2.082,-1.697)

(2,1) -0.572 0.564 1.772
(-0.895,-0.278) -

0,2) -2.299 0.284 0.126 7.944
(-2.417,-2.186)| (0.196,0.433)

1,2) -1.560 0.720 0.373 2.685
(-1.831,-1.360)| (0.509,1.037)

(2,2) 0.227 - 1.255 0.797
(0.0886,0.364)

0,3) -5.830 0.003 -
(-6.233,-5.508)

1,3) -1.367 0.255 3.925
(-2.242,-0.565)

(2!3) - -

Note) Values in parentheses are lower bound and upper balndsvof credible interval corresponding to 95% of its digant level.

Finally, in case condition state at timg is (0, 0), the transitions among condition states can be: 1) naided&on
from timeta to 7. The transition probability of the event gy 00); 2) Damage level changes one step, crack appears, with
transition probability £001m (M = 1, 2, 3)); 3) Damage level changes two steps, crack appears, naithition probability
(mo02m (M= 1,2, 3)); 4) Damage level changes three steps, crack appeandgrarisition probabilityfogzm (M = 1, 2, 3)).

6.3. Results

In the study, hazard rat, of each condition state was assumed to be dependent onlgffio wolume (Eq. [(56)).
This assumption was acceptable agfittasolume is considered as one of the main factors causingidietiéon of road
(Tsuda et dll, 2006). As a matter of fact, crack initiationldde also related to other factors such as: ambient tettypera
materials, and axes load. However, in our study, thosefacin be considered as already incorporated in the constant
term of regression function. The denotation of constanhtand trafic volume used in the study au% =1 and@",
respectively.

The objective of estimation is to estimate the model's patenss;, which is often referred as unknown parameters
in statistical models (Eq[{45)). Following equation déses the function form assumed for the hazard égte

3 2 2
tho= . > Box and 6 = > A, (56)
n=1 m=1 m=1

i=1,2,n=2123k=1,---,2751)

In the program (coded in FORTRAN 90), at each iteration, neluesg;, are recorded. To verify its values, likelihood
ratio R(B_,) (m = 1,---,1) is examined. Values g8 will be accepted as convergent values with a certain degree o
significanceR(ﬁ_m) =2{In L(B) —1In L(/}_m)}, Where,B_m is a vector, in whichm element of3, is substituted fop with

its mean equals to 0. Wheﬁ(ﬁ_m)| > 3.48 is observed, null hypothesss, = O can be dismissed by a significant level
5%.

Results of estimation using the COHA model with MCMC simigiatare shown in Tablel 3. In the table, values in
parentheses are lower bound and upper bound values of ttiblerinterval with 95% significant level, calculated by
using Egs.[(551a) an@(558-b). Valuesajfin Table3 infers that other influencing factors to detetioraother than tréiic
volume have considerably impacts on the hazard rate of tonditate {,1) = (1,1),(2 1),(2 2), and (13). Hazard rate
of condition state (23) is not obtained due to a reason that data on damage levei@ @vailable. Estimation results
also highlight a fact that annual ffie volume has a significant impact on the deterioration ofzwmial crack, with their
parameter value)t%2 andﬁf2 equal to 284 and 0720, respectively.

The two last right column of Tablg 3 show the values of hazatd;, calculated based on Eq._{(56) and the life
expectancy of condition state (or the duration of being irpadition state) calculated based on Ef.](15). It can be
interpreted from the values of hazard ratdbat longitudinal crack progresses significantly slowamnthorizontal crack
and alligator crack. Furthermore, the life expectancy afzumtal cracks becomes relatively short after longitadlin
cracks occurs. The life expectancy of damage level 1 ofalbigcrack is not counted as a result of ifigient recorded
data. This problem might be due to the past interventiont)) albjectives to heal only for horizontal and longitudinal
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Table 4: Markov transition probability according to crauitype

Damage levels Cracking types
0 1 2 3
Longitudinal crack
0 0.935 0.060 0.004 0.001
1 0.0 0.858 0.108 0.034
2 0.0 0.0 0.569 0.431
3 0.0 0.0 0.0 1.0
Horizontal crack
0 0.882 0.098 0.013 0.007
1 0.0 0.689 0.170 0.141
2 0.0 0.0 0.285 0.715
3 0.0 0.0 0.0 1.0
Alligator crack
0 0.997 0.003 0.000 0.000
1 0.0 0.775 0.225 0.000
2 0.0 0.0 0.997 0.003
3 0.0 0.0 0.0 1.0

Note) Transition probabilities are in one year term.

Table 5: Competing m.t.p for pairs of condition states.

Condition states] (0,0) (L1 (L2) @L3) @1 (22 23 GBI G2 33
©,0) 0.822 0053 0.98 0003 0004 0.013 0000 0001 0.006 0.000
(1,1) 0.0 0755 0.084 0002 0.105 0.014 0.000 0034 0.006 0.000
1,2) 00 00 0678 0003 0007 0.170 0.000 0.002 0.140 0.000
(1,3) 00 00 00 0728 0007 0023 0219 0.003 0.020 0.000
(2,1) 00 00 00 00 0541 0016 0001 0422 0.020 0.000
(2,2) 00 00 00 00 00 028 0000 0001 0715 0.000
(2,3) 00 00 00 00 00 00 0963 0004 0029 0.004
(3,1) 00 00 00 00 00 00 00 0971 0.029 0.000
(3,2) 00 00 00 00 00 00 00 00 1000 0.000
(3.3) 00 00 00 00 00 00 00 00 00 1.0

Note) Transition probabilities are in one year term.

cracks. Overall, it takes about more than 21 years for a reetibs in perfect condition state to encounter heavily dzena
level of longitudinal crack and about 10 years to be in thedasnage leveli(= 3) of horizontal crack.

The transition probabilities among damage levels of redecracking types are presented in Tdlle 4. The properties
of transition probabilities are estimated by means of etqgebazard rates, which are calculated on average bastg usin
the MUSTEM model.

Using the Egs. [[20)[(31), and {35), the properties of thepmting m.t.p for each pair of condition staiel) are
estimated and shown in Talile 5. The properties of the competit.p in Tablé b are not purely homogenous Markov
properties. The properties reflect transitions among pdicendition states in one year term after last interverstiohn
interesting finding is that transition probabilities oftial damage levels of either longitudinal crack and hortaborack
are considerable high, reflecting the true cracking detatiin in the area of targeted road sections.

We present in Fig 13 deterioration curves of respectivekingctypes. The horizontal axis indicates elapsed time (in
years). The blue lines demonstrate the change in valuerdfitian probability, in which, damage levels of crackingeg
remain in the same states. The two lines in the lower parteofifure are referred to same cracking types. It is observable
that there is a sharp decrease in the values of transitidmapiiity concerning damage levels of horizontal crack,le/hi
it is relatively slow with longitudinal crack. This is cosponding to the results in Tall¢ 3. Thus, generallffice to
say that the overall cracking of road sections is dominatedeterioration of horizontal crack. In addition, corréat
in term of deterioration curves between horizontal craaklangitudinal crack reveals a potential of horizontal &ag
influence over the longitudinal crack. Finally, the pinkdiillustrate the change of transition probability amorfiedent
cracking types.

Fig. [4-a additionally gives information on the distributiof condition statei(l) over the time span of 25 years.
Calculation for drawing this figure is based on obtained ceting m.t.pP; (y) through Eq.[(3B). Colored patterns in the
figure have their respective implications to cracking typed damage levels.

It can be seen from the figure that, within 3.5 years of usagebers of road sections in good condition account for
about 50% out of the total numbers. Within the same periotkritgation concerning horizontal crack is more intense
than longitudinal crack, with a percentage of 20 % in termisfribution. Approximately 8 years after the initial time,
numbers of road sections with longitudinal crack are fosehto reach 50%. The distribution of alligator crack irsthi
figure is not significant observed. With this observation,reaize that horizontal crack is the dominant cracking type
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Figure 3: Expected deterioration curves of cracks.

In practice, most of interventions have been carried ougtover the horizontal crack and longitudinal crack befoee t
occurrence of alligator crack.
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Figure 4: Condition states distribution

6.4. Comparison

Empirical applications on the same sort of cracking dateevierther carried out with the MUSTEM model and the
HIMA model for the comparison of estimation results. The M=EB model was used separately with each cracking
type. Whilst, the HIMA model was used with three cracking typéthe same time like in the COHA model. Due to the
differences of the three models, the MUSTEM model and the HIMAehoonsider only the observed sampling values
of typical cracking type, hidden cracking types are not aered in these two models. Moreover, with the HIMA model,
it is not possible to construct deterioration overall csrgeice the HIMA model considers only each cracking type and
its damage level.

Distribution of condition states over time using the HIMA deb is shown in Fig[[¥-b. This figure can be compared
directly with the distribution of condition states distiipn using the COHA model (Fidg.] 4-a). As can be seen from
comparison between the two figures (Hifj. 4-a and Hig. 4-k)diffierences in the shapes and patterns corresponding to
the damage levels under two models are not noteworthy obdertowever, there is a minor noticeabl&elience with
regard to the probability distribution of horizontal cragile. becomes smaller along with time axis). Reason for the
difference of condition state distribution of horizontal criekelieved due to the overestimation of horizontal cragkin
type when using the HIMA model.

16



Elapsed time (Years)

0 5 10 15 20 25

Damage level

—e=Longitudial crack - COHA model -+@+ Longitudial crack - MUSTEM model

—==—Horizontal crack - COHA model «+++ Horizontal crack - MUSTEM model

Figure 5: Comparison of deterioration curves between the WENS model and the COHA model.

The comparison of estimation results between the MUSTEMehadd the COHA model are shown in F{g. 5. In
either cases, there appear a substantial discrepancyridbation speed obtained from the MUSTEM model is sharply
faster than that of the COHA model. Thesé&eliences are due to the fact that the MUSTEM model uses onigsepting
sampling data, which are always in worse condition statéss problem is regarded as overestimation of true condition
states. Meanwhile, the COHA model has ability to reveal iddén condition states of damage levels and cracking types.
Thus, its estimation results are greatly improved.

7. Conclusions

Deterioration of an infrastructure object can be represehy means of several performance indicators. In mongorin
activities, it is often the case that worse value of perfarogeindicator is selected as representative conditioa.stalues
of other performance indicators could be neglected, anglitimnaining as hidden information in the data bank. A typical
example of such a problem is with monitoring data of cracksac&s occur on the surface of a road section can be in
multiple directions (e.g. longitudinal crack, horizontahck, and alligator crack). In many cases, only crack withse
value (i.e. percentage of crack on road surface), is chasbgr tepresentative crack. This selection bias could plgssib
result in non-optimal decisions on chosing interventiaratsgy to be executed on road sections in order to provide
adequate level of service.

In order to tackle the problems, we developed a novel Markamatd model that can be used for deterioration pre-
diction of infrastructure system with more than a singlef@@nance indicator and with multiple condition states. The
model was formulated to mitigate the selection bias embegddenonitoring data. Precisely, in the model, it is assumed
that deterioration process can be of multiple types. Eapé of deterioration is measured by use of damage levels. The
overall condition state of an infrastructure object is tbmbination of deterioration type and damage level. In aaldlitt
is also assumed that condition state is defined based on eetitimgpselection among damage levels and cracking types,
and therefore, the model’'s name is a competitive Markov mode

In the paper, we also presented a novel numerical solutiobtiin model’s parameters by using Bayesian estimation
method and Markov Chain Monte Carlo simulation. The moded then tested with a cracking dataset of road sections
in Japan. It was found that horizontal crack is the dominaatking type. Longitudinal crack progresses slower than
horizontal crack and alligator crack.

Finally, it is concluded that the model is robust and thenestion results are significant. The model can be applied
not only for modelling crack initiation but also for otheipgs of deterioration as well, e.g. the corrosion of rebaestdu
both carbonition and chloride attack.
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